Sign In

3.14 : Turnover Number and Catalytic Efficiency

The turnover number of an enzyme is the maximum number of substrate molecules it can transform per unit time. Turnover numbers for most enzymes range from 1 to 1000 molecules per second. Catalase has the known highest turnover number, capable of converting up to 2.8×106 molecules of hydrogen peroxide into water and oxygen per second. Lysozyme has the lowest known turnover number of half a molecule per second.

Chymotrypsin is a pancreatic enzyme that breaks down proteins during digestion. The turnover number of chymotrypsin is 100 molecules per second. If this reaction were to occur uncatalyzed, peptide bonds would take hundreds of years to break in water at neutral pH. Thus, the high turnover number of chymotrypsin helps quick digestion of proteins in the intestine.

The enzyme ribulose 1,5-bisphosphate carboxylase oxygenase or RuBisCO has a very low turnover number of fixing 3 molecules of CO2 per second and is one of the slowest enzymes. However, the abundance of RuBisCO in nature makes up for the low turnover number. RuBisCO constitutes around 50% of the total protein found in leaves.

An enzyme with a high turnover number may not necessarily be highly efficient. The catalytic efficiency of an enzyme is given by the ratio of turnover number, kcat, to the affinity, KM. In other words, an enzyme should also have a low KM for the substrate in order to be efficient. The average catalytic efficiency of most enzymes is approximately 105 M-1s-1, meaning they are moderately efficient. Few enzymes with catalytic efficiency between 108-109 M-1s-1 are superefficient or catalytically perfect.

Tags
Turnover NumberCatalytic EfficiencyEnzymeSubstrate MoleculesCatalaseLysozymeChymotrypsinDigestionRuBisCOAffinityKcatKMCatalytic Efficiency RangeSuperefficient Enzymes

From Chapter 3:

article

Now Playing

3.14 : Turnover Number and Catalytic Efficiency

Energy and Catalysis

9.0K Views

article

3.1 : The First Law of Thermodynamics

Energy and Catalysis

4.7K Views

article

3.2 : The Second Law of Thermodynamics

Energy and Catalysis

4.3K Views

article

3.3 : Enthalpy within the Cell

Energy and Catalysis

4.7K Views

article

3.4 : Entropy within the Cell

Energy and Catalysis

8.2K Views

article

3.5 : An Introduction to Free Energy

Energy and Catalysis

6.6K Views

article

3.6 : Endergonic and Exergonic Reactions in the Cell

Energy and Catalysis

12.6K Views

article

3.7 : The Equilibrium Binding Constant and Binding Strength

Energy and Catalysis

8.2K Views

article

3.8 : Free Energy and Equilibrium

Energy and Catalysis

5.0K Views

article

3.9 : Non-equilibrium in the Cell

Energy and Catalysis

3.1K Views

article

3.10 : Oxidation and Reduction of Organic Molecules

Energy and Catalysis

5.1K Views

article

3.11 : Introduction to Enzymes

Energy and Catalysis

14.7K Views

article

3.12 : Enzymes and Activation Energy

Energy and Catalysis

10.2K Views

article

3.13 : Introduction to Enzyme Kinetics

Energy and Catalysis

17.5K Views

article

3.15 : Catalytically Perfect Enzymes

Energy and Catalysis

3.6K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved