Sign In

Inositol-requiring kinase one or IRE1 is the most conserved eukaryotic unfolded protein response (UPR) receptor. It is a type I transmembrane protein kinase receptor with a distinctive site-specific RNase activity. As the binding mechanics of the misfolded proteins with the N-terminal domain of IRE-1 are unclear, three binding models — direct, indirect, and allosteric -- are proposed for receptor activation. Nevertheless, it is known that once a misfolded protein associates with IRE1, it activates its kinase domain, which then trans-autophosphorylates each other, exposing the endoribonuclease or RNA-splicing domains.

IRE1 and ER Stress Regulation

Activated IRE1 molecules form a multimeric assembly that unconventionally carries out spliceosome-independent splicing of the mRNA encoding X-box binding protein one, or XBP1. XBP1 is a transcription activator that upregulates the production of proteins required for ER folding and degradation. Besides XBP1 mRNA, IRE1 cleaves other mRNA substrates by the regulated IRE1-dependent decay of messenger RNAs or RIDD. The target mRNAs for RIDD carry a consensus sequence in their cleavage sites, which helps form a stem-loop structure for recognition by IRE1. RIDD reduces the number of nascent proteins directed to the ER lumen or membrane and reduces the load on protein folding and quality check in the ER.

During proteotoxic stress, the IRE1 response can activate UPR to help establish protein homeostasis in the ER. If the UPR fails to salvage the cell by reducing the ER protein overload, IRE1 initiates cell death through the decay of anti-apoptotic microRNAs. Thus, IRE1 signaling is involved in fundamental cellular physiology and homeostasis.

Tags
Unfolded Protein ResponseIRE1ER StressXBP1RIDDProteotoxic StressProtein HomeostasisCell DeathApoptosis

From Chapter 15:

article

Now Playing

15.16 : Regulation of the Unfolded Protein Response

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

2.3K Views

article

15.1 : The Endoplasmic Reticulum

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

8.2K Views

article

15.2 : Smooth Endoplasmic Reticulum

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.5K Views

article

15.3 : Role of ER in the Secretory Pathway

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.6K Views

article

15.4 : Directing Proteins to the Rough Endoplasmic Reticulum

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.0K Views

article

15.5 : Protein Translocation Machinery on the ER Membrane

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.9K Views

article

15.6 : Cotranslational Protein Translocation

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.0K Views

article

15.7 : Post-translational Translocation of Proteins to the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.7K Views

article

15.8 : Insertion of Single-pass Transmembrane Proteins in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

5.7K Views

article

15.9 : Insertion of Multi-pass Transmembrane Proteins in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

6.7K Views

article

15.10 : Tail-anchoring of Proteins in the ER Membrane

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

2.9K Views

article

15.11 : GPI Anchoring of Proteins in the ER Membrane

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.6K Views

article

15.12 : Protein Modifications in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

4.3K Views

article

15.13 : Protein Folding Quality Check in the RER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.2K Views

article

15.14 : Export of Misfolded Proteins out of the ER

Transmembrane Transport in Endoplasmic Reticulum and Peroxisomes

3.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved