Sign In

20.26 : Alkenes via Reductive Coupling of Aldehydes or Ketones: McMurry Reaction

The radical dimerization of ketones or aldehydes gives vicinal diols through a pinacol coupling reaction. However, the behavior of titanium metals used for the reaction as a source of electrons is unusual. When the reaction is carried out in the presence of titanium, diols can be isolated at low temperatures. Else titanium further reacts with diols, forming alkenes through the McMurry reaction.

Figure1

The reaction is a two-step process. The mechanism is still under study, but for some reagent combinations, the first step is similar to the pinacol coupling reaction, involving a single electron transfer from titanium to the carbonyl group to form a ketyl, eventually forming a diol. The second step involves deoxygenation of the diol via binding on the surface of titanium metal particles or coordinating to titanium complexes to yield an alkene. The McMurry coupling reaction involving two same carbonyl compounds gives symmetrical alkenes.

The intramolecular McMurry reaction affords cycloalkenes with eight or more carbon atoms in the ring.

Tags
AlkenesReductive CouplingAldehydesKetonesMcMurry ReactionRadical DimerizationVicinal DiolsPinacol Coupling ReactionTitanium MetalsSingle Electron TransferKetyl FormationDeoxygenationSymmetrical AlkenesIntramolecular McMurry ReactionCycloalkenes

From Chapter 20:

article

Now Playing

20.26 : Alkenes via Reductive Coupling of Aldehydes or Ketones: McMurry Reaction

Radical Chemistry

1.7K Views

article

20.1 : Radicals: Electronic Structure and Geometry

Radical Chemistry

3.6K Views

article

20.2 : Electron Paramagnetic Resonance (EPR) Spectroscopy: Organic Radicals

Radical Chemistry

2.2K Views

article

20.3 : Radical Formation: Overview

Radical Chemistry

1.9K Views

article

20.4 : Radical Formation: Homolysis

Radical Chemistry

3.1K Views

article

20.5 : Radical Formation: Abstraction

Radical Chemistry

3.2K Views

article

20.6 : Radical Formation: Addition

Radical Chemistry

1.5K Views

article

20.7 : Radical Formation: Elimination

Radical Chemistry

1.5K Views

article

20.8 : Radical Reactivity: Overview

Radical Chemistry

1.7K Views

article

20.9 : Radical Reactivity: Steric Effects

Radical Chemistry

1.8K Views

article

20.10 : Radical Reactivity: Concentration Effects

Radical Chemistry

1.4K Views

article

20.11 : Radical Reactivity: Electrophilic Radicals

Radical Chemistry

1.7K Views

article

20.12 : Radical Reactivity: Nucleophilic Radicals

Radical Chemistry

1.9K Views

article

20.13 : Radical Reactivity: Intramolecular vs Intermolecular

Radical Chemistry

1.6K Views

article

20.14 : Radical Autoxidation

Radical Chemistry

1.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved