Sign In

21.9 : Radical Chain-Growth Polymerization: Mechanism

The radical chain-growth polymerization mechanism consists of three steps: initiation, propagation, and termination of polymerization. The polymerization initiates when a free radical generated from the radical initiator adds to the unsaturated bond in the monomer. The unpaired electron of the free radical and one π electron in the unsaturated bond creates a σ bond between the free radical and the monomer. As a result, the other π electron in the unsaturated bond converts this species into the new free-radical. The mechanism of the initiation reaction between a phenyl free radical and a vinyl chloride monomer is shown in Figure 1.

Figure1

Figure 1: The initiation step of the reaction mechanism of the free-radical polymerization of vinyl chloride using a phenyl free radical.

The propagation step is the addition of this new free radical to the unsaturated bond in another monomer. This propagation step repeats to add more monomers and grow the polymer chain. In each addition, the radical site shifts to the newly added monomer. The number of times the propagation step repeats determines the molecular weight of the polymer chain. The propagation step of vinyl chloride free-radical polymerization is shown in Figure 2.

Figure2

Figure 2: The propagation step of the reaction mechanism of the free-radical polymerization of vinyl chloride.

The monomers add preferentially such that the unpaired electron is positioned on the more substituted carbon. For example, monosubstituted ethylene monomers such as propylene, vinyl chloride, and styrene add to the growing chain in a head-to-tail manner. Here, the radical site in the growing polymer chain is always on the substituted carbon (tail).

Due to the high reactivity of radical intermediates, the termination of polymer growth is inevitable. Different reaction pathways lead to the termination of polymerization. One is the coupling reaction of a radical site in a growing chain with a radical site in another. Another way of termination is the radical disproportionation reaction, where the radical site of one growing polymer chain abstracts hydrogen from the α carbon of the radical site in the other chain. So, the former chain is terminated with an alkyl group, and the latter is terminated with an alkenyl group. The reaction mechanisms of radical coupling and disproportionation in the termination of the growth of a poly(vinyl chloride) chain are depicted in Figure 3.

Figure3

Figure 3: The termination of vinyl chloride polymerization via radical coupling (top) and disproportionation reaction (bottom).

Chain transfer reagents and chain inhibitors can also terminate a polymer chain's growth. However, in this case, the radical site is not eliminated but either removed from the growing chain or made less reactive.

Tags
Radical Chain growth PolymerizationMechanismInitiationPropagationTerminationFree RadicalVinyl ChloridePolymer ChainMolecular WeightCoupling ReactionDisproportionation ReactionMonomersUnsaturated BondPhenyl Free RadicalReactivityAlkyl GroupAlkenyl Group

From Chapter 21:

article

Now Playing

21.9 : Radical Chain-Growth Polymerization: Mechanism

Synthetic Polymers

2.1K Views

article

21.1 : Characteristics and Nomenclature of Homopolymers

Synthetic Polymers

2.5K Views

article

21.2 : Characteristics and Nomenclature of Copolymers

Synthetic Polymers

2.0K Views

article

21.3 : Polymers: Defining Molecular Weight

Synthetic Polymers

2.3K Views

article

21.4 : Polymers: Molecular Weight Distribution

Synthetic Polymers

2.7K Views

article

21.5 : Polymer Classification: Architecture

Synthetic Polymers

2.2K Views

article

21.6 : Polymer Classification: Crystallinity

Synthetic Polymers

2.3K Views

article

21.7 : Polymer Classification: Stereospecificity

Synthetic Polymers

2.1K Views

article

21.8 : Radical Chain-Growth Polymerization: Overview

Synthetic Polymers

2.0K Views

article

21.10 : Radical Chain-Growth Polymerization: Chain Branching

Synthetic Polymers

1.7K Views

article

21.11 : Anionic Chain-Growth Polymerization: Overview

Synthetic Polymers

1.8K Views

article

21.12 : Anionic Chain-Growth Polymerization: Mechanism

Synthetic Polymers

1.8K Views

article

21.13 : Cationic Chain-Growth Polymerization: Mechanism

Synthetic Polymers

2.0K Views

article

21.14 : Ziegler–Natta Chain-Growth Polymerization: Overview

Synthetic Polymers

2.9K Views

article

21.15 : Step-Growth Polymerization: Overview

Synthetic Polymers

3.1K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved