In semiconductor devices, diodes play a crucial role in directing current flow, and its operation is primarily categorized into forward bias and reverse bias. A diode is said to be forward-biased when its p-type region is connected to the positive terminal of a battery and its n-type region is linked to the negative terminal. This configuration reduces the potential barrier within the diode, allowing current to flow easily from the p to the n-type region.
The behavior of a diode in forward bias is governed by its I-V characteristics which is influenced by the diode's material, temperature, and physical dimensions. When forward-biased, a diode's current (ID) can be described by the diode equation:
where IS is the saturation current, q is the electron charge, VD is the applied voltage across the diode, n is the emission coefficient, k is Boltzmann's constant, and T is the junction temperature. The thermal voltage VT (kT/q) measures the energy required to move charge carriers across the diode and its value at room temperature is about 26 mV.
The diode shows a negligible current for voltages below the cut-in voltage, typically 0.7V for silicon diodes. In forward bias, for every decade change in the forward current, the diode voltage changes by approximately 60mV. The saturation current (IS) varies with temperature and the cross-sectional area of the diode and doubles for every 10°C increase. Due to the temperature dependence of IS and VT, a diode's voltage drop decreases by roughly 2mV for each 1°C increase in temperature at a constant current, a property leveraged in temperature-sensing circuits like electronic thermometers. Understanding these properties is crucial for electronics where diodes are central components, such as rectifiers, signal mixers, and voltage regulators.
From Chapter 11:
Now Playing
Diodes
297 Views
Diodes
156 Views
Diodes
129 Views
Diodes
99 Views
Diodes
174 Views
Diodes
337 Views
Diodes
53 Views
Diodes
227 Views
Diodes
207 Views
Diodes
178 Views
Diodes
94 Views
Diodes
160 Views
Diodes
180 Views
Diodes
54 Views
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved