JoVE Logo

Sign In

Concept
Experiment

5-Methylcytosine Dot Blot to Determine the Extent of DNA Methylation


Transcript


DNA methylation is an epigenetic modification that involves the addition of a methyl group to the cytosine base of the DNA to form 5-methylcytosine. This modification alters the gene expression.

To quantify DNA methylation via dot-blot, take genomic DNA samples derived from human chondrocytes at various stages of de-differentiation that exhibit different levels of methylated cytosine.

Treat the DNA samples with sodium hydroxide — a strong alkali — and heat them. This treatment breaks the hydrogen bonds between the two DNA strands, resulting in DNA denaturation. Add ammonium acetate to neutralize the alkali, preventing excessive DNA degradation.

Take a nylon membrane and spot denatured DNA samples as dots. The negatively-charged DNA binds to the positively-charged nylon membrane via electrostatic interactions, resulting in its blotting on the solid support.

Treat the blotted membrane with a blocking buffer to prevent non-specific binding. Next, add anti-5-methylcytosine antibodies to the membrane, and incubate. These antibodies exclusively bind to the methylated cytosine on the DNA.

Wash to remove the unbound antibodies, and add chemiluminescent enzyme-conjugated secondary antibodies that specifically bind to the primary antibodies.

Add a chemiluminescent substrate onto the membrane. The enzyme on the antibody reacts with the substrate to produce chemiluminescence — yielding dots of various intensities.

Image the membrane and measure the dots' intensities which corresponds to extent of DNA methylation in each sample.

USAGE STATISTICS
JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved