JoVE Logo

Sign In

Concept
Experiment

Utilizing Bead-Supported Lipid Bilayers to Investigate the Synaptic Output from T Cells


Transcript


Take bead-supported lipid bilayers, or BSLBs, silica beads coated with lipid bilayers conjugated with antigenic peptide-MHC complexes, adhesion and co-stimulatory molecules, acting as synthetic antigen-presenting cells.

Incubate with T cells.

TCRs bind to antigenic peptides on BSLBs, which, along with co-stimulatory signals, form an immune synapse, activating T cells.

This binding triggers intracellular signaling cascades, inducing actin rearrangement and forming microclusters at the synapse containing adhesion and signaling molecules.

T cells release trans-synaptic vesicles enriched in TCRs, co-stimulatory molecules, and lytic granule contents into the synapse, binding to BSLBs.

Gradually cool down the co-culture to separate BSLBs from T cells.

Centrifuge and discard the supernatant. Use a protein-containing buffer to block the free binding sites on the surfaces.

Centrifuge and treat BSLBs and T cells with fluorophore-conjugated antibodies that bind to specific signaling and co-stimulatory molecules.

Using flow cytometry, analyze fluorescence signals from BSLBs and T cells to quantify the synaptic output.

USAGE STATISTICS
JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved