Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present study highlights the advantages of employing the method developed by Jeffrey and Humphrey for extracting and quantifying fat-soluble pigments from microalgae. This method serves as a valuable tool for assessing the influence of growth factors on chlorophyll production and cellular content in these organisms.

Abstract

Microalgae contain two main groups of pigments: chlorophylls and carotenoids. Chlorophyll is a green pigment that absorbs light energy and transforms it into chemical energy to facilitate the synthesis of organic compounds. This pigment serves as a valuable primary source for biotechnological input products in the food, pharmaceutical, and cosmetic industries due to its high antioxidant properties and coloring capabilities. The objective of this research was to evaluate the effect of growth factors (CO2 concentration, light color, and light intensity) through a Taguchi L4 experimental design on cell growth and the cellular content of chlorophyll a and b in Chlorella sorokiniana, followed by validation of the method using Haematococcus pluvialis microalgae as an additional study model. Cell growth was quantified using the optical density spectrophotometric technique at a wavelength of 550 nm. For the quantification of chlorophylls, a cell extract was obtained using a 90% pure acetone solution, and subsequently, the concentrations of chlorophylls a and b were quantified using spectrophotometric techniques at wavelengths of 647 nm and 664 nm, according to the method described by Jeffrey and Humphrey. The experimental results indicated that controlling conditions of low CO2 addition, purple light, and low light intensity increases both cell growth and the concentration of chlorophylls a and b within the cells. The implementation of this chlorophyll quantification method allows for quick, simple, and precise determination of chlorophyll content, as the wavelengths used are at the absorbance peaks of both types of chlorophylls, making this technique easily reproducible for any microalgae under study.

Introduction

In recent years, the growing environmental problems caused by anthropogenic activities and their adverse effects on the health and balance of ecosystems have driven the search for more efficient and environmentally friendly production systems. This has accelerated processes in industries and fostered the implementation of bioremediation treatments and the development of bio compounds to mitigate these harmful effects1.

This context has led to a significant growth in the study of microalgae, driven by the need to find innovative solutions to current environmental and economic challenges. Microalgae thrive in aquatic e....

Protocol

1. Culture media preparation and inoculum preparation

  1. Prepare 1 L of 3N-BBM+ V(CCAP) growth medium (Macronutrients: NaNO3 [0.75 g L-1], CaCl2 [0.019 g L-1], MgSO4 [0.019 g L-1], K2HPO4 [0.057 g L-1], NaCl [0.025 g L-1], KH2PO4 [0.175 g L-1]; micronutrients: Na2 EDTA [0.0186 g L-1], FeCl3 [0.0024 g L-1], MnCl<.......

Representative Results

To observe the efficiency of the technique detecting variations in chlorophyll cellular concentration and evaluate the effect of growth factors in C. sorokiniana, a Taguchi L4 experimental design was established, evaluating CO2 volume addition, light color, and light intensity. Each factor was assessed at low and high levels, as shown in Table 1, under the conditions defined by the experimental design in Table 2.

Once the experim.......

Discussion

The comparative study between H. pluvialis and C. sorokiniana revealed significant differences in chlorophyll production dynamics. While H. pluvialis exhibited a decrease in chlorophyll concentration throughout the experiment, C. sorokiniana showed a steady increase. Additionally, there was initially a lower proportion of chlorophyll a in both species, but this ratio reversed in particular growth conditions, which may give indications of an induction of the production of said .......

Acknowledgements

The authors gratefully acknowledge the partial funding from the TecNM under the Call for Scientific Research, Technological Development, and Innovation (16898.23-P) for the Institutos Tecnologicos Federales. They also appreciate the support from the Instituto de Ciencia, Tecnología e Innovación del Estado de Michoacán de Ocampo (FCCHTI23_ME-4.1.-0001).

....

Materials

NameCompanyCatalog NumberComments
C3H6OMeyer67-64-1Acetone 90%
15 mL tubeBiologix10-9502Test tube
2510-DTHBransonD-73595Sonicator
5 mL screw cap test tubeKimax45066-13100Test tube
50 mL centrifuge tubeBiologix10-9151Test tube
Aluminum foilReynolds611 standard, 12" x 1000 feetTest tube cover 
CaCl2Meyer0925-250Calcium Chloride
Centrifuge Dynamica14 RCentrifuge Refrigerated
CoCl2Merck1057-100Cobalt dichloride
FeCl3Merck157740Iron(III) Chloride
K2HPO4Meyer2051-250Dipotassium Phosphate
KH2PO4Meyer2055-250Monopotassium Phosphate
MgSO4Meyer1605-250Magnesium Sulphate
MicropipetteLabNetModel Beta-PetteMicropipette
MnCl2Merck429449Manganese(II) Chloride 
Na2 EDTA Merck200-449-4Edatamil, Edetato Disodium Salt Dihydrate
Na2MoO4Merck243655Sodium Molybdate
NaClMeyer2365-500Sodium Chloride
NaNO3Meyer2465-250Sodium Nitrate
RGB LED stripeSterenGAD-LED2Light source
SpectrophotometerPerkinElmerModel Lambda35Spectrophotometer
spectroradiometerGigahertz-Optikmodel BTS256
VortexScientific IndustriesVortex-Genie® 2Vortex
ZnCl2Merck208086Zinc Chloride

References

  1. Khan, M. I., Shin, J. H., Kim, J. D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 17 (1), 36 (2018).
  2. Otero-Paternina, A. S. M., Cruz-Casallas, P.

Explore More Articles

MicroalgaeChlorophyll AChlorophyll BGrowth FactorsCO2 ConcentrationLight ColorLight IntensityChlorella SorokinianaHaematococcus PluvialisTaguchi Experimental DesignOptical DensitySpectrophotometric TechniquePigment QuantificationAntioxidant PropertiesBiotechnological Applications

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved