A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
يُعرض هنا بروتوكول لبناء صور نوم تستند إلى نموذج تراجع المخاطر النسبية في كوكس ونموذج تراجع المخاطر المتنافس. الأسلوب المنافس هو طريقة أكثر عقلانية لتطبيق عندما تكون الأحداث المتنافسة موجودة في تحليل البقاء على قيد الحياة.
طريقة كابلان - ماير ونموذج كوكس انحدار المخاطر النسبية هي التحليلات الأكثر شيوعا في إطار البقاء على قيد الحياة. هذه هي سهلة نسبيا لتطبيق وتفسير ويمكن تصويرها بصريا. ومع ذلك، عندما تكون هناك أحداث متنافسة (مثل الحوادث القلبية الوعائية والحوادث الدماغية الوعائية، والوفيات المرتبطة بالعلاج، وحوادث المرور)، ينبغي تطبيق أساليب البقاء القياسية بحذر، ولا يمكن تفسير البيانات في العالم الحقيقي تفسيراً صحيحاً. قد يكون من المستحسن التمييز بين أنواع مختلفة من الأحداث التي قد تؤدي إلى الفشل ومعاملتها بشكل مختلف في التحليل. وهنا، تركز الأساليب على استخدام نموذج الانحدار المتنافس لتحديد العوامل التكهنية الهامة أو عوامل الخطر عند وجود أحداث متنافسة. بالإضافة إلى ذلك، يتم إنشاء مخططات نوموغرامية تستند إلى نموذج انحداري نسبي للمخاطر ونموذج تراجع منافس لمساعدة الأطباء على إجراء تقييمات فردية وطبقات مخاطر من أجل شرح تأثير العوامل المثيرة للجدل على التكهن.
الوقت المناسب لتحليل البقاء على قيد الحياة الحدث هو شائع جدا في الدراسات السريرية. تقيس بيانات البقاء مدى الوقت من وقت البدء حتى حدوث الحدث الذي يهمه، ولكن غالباً ما يحول حدث الاهتمام عن طريق حدث آخر. إذا كان هناك أكثر من نوع من نقطة النهاية، يطلق عليهم نقاط نهاية المخاطر المتنافسة. وفي هذه الحالة، فإن تحليل المخاطر المعياري (أي نموذج كوكس للأخطار المتعلقة بالسبب المحدد) لا يعمل بشكل جيد في كثير من الأحيان لأن الأفراد الذين يعانون من نوع آخر من الأحداث يخضعون للرقابة. فالأفراد الذين يتعرضون لحدث منافس غالباً ما يظلون في مجموعة المخاطر، لأن المخاطر المتنافسة عادة ما تكون غير مستقلة. لذلك، 1 Fine و Grayدرس تقدير نموذج الانحدار للتوزيع الفرعي للمخاطرة المنافسة. في سياق المخاطرة المتنافسة، يمكن التمييز بين ثلاثة أنواع مختلفة من الأحداث.
يقيس المرء البقاء على قيد الحياة بشكل عام (OS) من خلال إظهار فائدة سريرية مباشرة من طرق العلاج الجديدة للمرض. يقيس نظام التشغيل وقت البقاء على قيد الحياة من وقت المنشأ (أي وقت التشخيص أو العلاج) إلى وقت الوفاة لأي سبب من الأسباب ويقيّم بشكل عام الخطر المطلق للوفاة ، وبالتالي عدم التمييز بين أسباب الوفاة (مثل الوفاة الخاصة بالسرطان (CSD) أو الوفاة غير المحددة بالسرطان (غير CSD))2. ولذلك، يعتبر نظام التشغيل نقطة النهاية الأكثر أهمية. وغالبا ما تكون الأحداث ذات الاهتمام تتعلق بالسرطان، في حين أن الأحداث غير المحددة للسرطان، والتي تشمل أمراض القلب وحوادث المرور أو غيرها من الأسباب غير ذات الصلة، تعتبر أحداثا متنافسة. المرضى الخبيثة مع تشخيص مواتية، الذين من المتوقع أن البقاء على قيد الحياة لفترة أطول، وغالبا ما تكون في خطر أكبر من غير CSD. وهذا هو، سيتم تخفيف نظام التشغيل من قبل أسباب أخرى للوفاة وتفشل في تفسير الفعالية الحقيقية للعلاج السريري بشكل صحيح. ولذلك، قد لا يكون نظام التشغيل المقياس الأمثل للوصول إلى نتائج المرض3. ويمكن تصحيح هذه التحيزات من خلال نموذج تراجع المخاطر المتنافس.
وهناك طريقتان رئيسيتان لتنافس بيانات المخاطر: نماذج المخاطر الخاصة بسبّب معيّن (نماذج كوكس) ونماذج مخاطر التوزيع الفرعي (النماذج المنافسة). في البروتوكول التالي، نقدم طريقتين لإنشاء nomograms استناداً إلى نموذج الخطر سبب محدد ونموذج مخاطر التوزيع الفرعي. يمكن إجراء نموذج المخاطر الخاص بالسبب المحدد ليتناسب مع نموذج كوكس للمخاطر النسبية ، الذي يتعامل مع الأشخاص الذين يختبرون الحدث المنافس على أنه يخضع للرقابة في وقت وقوع الحدث المنافس. في نموذج خطر التوزيع الفرعي الذي تم تقديمه من قبل Fine وGray 1 في عام 1999 ، يمكن التمييز بين ثلاثة أنواع مختلفة من الأحداث ، ويظل الأفراد الذين يختبرون حدثًا منافسًا في خطر إلى الأبد.
الرسم البياني هو تمثيل رياضي للعلاقة بين ثلاثة أو أكثر من المتغيرات4. تعتبر الصور الطبية المتغيرة في الأحداث البيولوجية والسريرية متغيرات (على سبيل المثال، درجة الورم وعمر المريض) وتولد احتمالات حدوث حدث سريري (مثل تكرار السرطان أو الوفاة) يصور بيانياً كنموذج تشخيص إحصائي لفرد معين. عموما، يتم صياغة الرسم البياني على أساس نتائج نموذج المخاطر النسبية كوكس5،6،7،8،9،10.
ومع ذلك، عندما تكون هناك مخاطر منافسة، قد يفشل الرسم البياني nomogram يستند إلى نموذج كوكس في الأداء الجيد. على الرغم من أن العديد من الدراسات السابقة11،12،13،14 طبقت nomogram المخاطر المتنافسة لتقدير احتمال CSD ، فقد وصفت دراسات قليلة كيفية إنشاء nomogram على أساس نموذج تراجع المخاطر المتنافسة ، وليس هناك حزمة موجودة متاحة لتحقيق ذلك. ولذلك، فإن الطريقة المعروضة أدناه ستوفر بروتوكول خطوة بخطوة لإنشاء مخطط نومي محدد قائم على المخاطر المتنافسة استناداً إلى نموذج تراجع المخاطر المتنافسة، فضلاً عن تقدير درجة المخاطر لمساعدة الأطباء في اتخاذ القرارات المتعلقة بالعلاج.
وافقت لجنة الاخلاق بمستشفى جينهوا بكلية الطب بجامعة تشجيانغ على بروتوكول الابحاث . للحصول على هذه التجربة، تم الحصول على الحالات من قاعدة بيانات المراقبة وعلم الأوبئة والنتائج النهائية (SEER). وال SEER هي قاعدة بيانات مفتوحة تشمل البيانات الديمغرافية وبيانات الإصابة والبقاء على قيد الحياة من 18 سجلاً للسرطان على أساس السكان. لقد سجلنا على موقع SEER ووقعنا خطاب ضمان للحصول على بيانات البحث (12296-Nov2018).
1- مصدر البيانات
2. تركيب وتحميل حزم واستيراد البيانات
ملاحظة: تنفيذ الإجراءات التالية استناداً إلى R البرامج (الإصدار 3.5.3) باستخدام الحزم rms15 و cmprsk16 (http://www.r-project.org/).
3. Nomogram على أساس نموذج كوكس الانحدار المخاطر النسبية
4. مخطط نومي يستند إلى نموذج تراجع المخاطر المتنافسة
5- تحليل الفئات الفرعية استناداً إلى درجة المخاطرة بالمجموعة
خصائص البقاء على قيد الحياة من الفوج المثال
وفي الفوج المثال، أُدرج في التحليل ما مجموعه 550 8 مريضاً مؤهلاً، وبلغ متوسط وقت المتابعة 88 شهراً (يتراوح بين شهر و95 شهراً). و 679 (7.94%) وكان عمر المرضى أقل من 40 عاماً و7,871 مريضاً (92.06%) كان المرضى أكبر من 40. وفي نهاية المحاكمة، بلغ عدد الذين بلغ...
وكان الهدف العام للدراسة الحالية هو وضع مخطط نومي محدد ينطوي على مخاطر منافسة يمكن أن يصف الأمراض في العالم الحقيقي وتطوير نموذج تقييم فردي ملائم للأطباء من أجل الاقتراب من قرارات العلاج. هنا، نحن نقدم خطوة بخطوة تعليمي لإنشاء nomograms استناداً إلى نموذج كوكس الانحدار وتنافس نموذج تراجع الم?...
اي
وقد تم دعم الدراسة من خلال منح من البرنامج العام لمؤسسة العلوم الطبيعية لمقاطعة تشجيانغ (رقم المنحة LY19H160020) والبرنامج الرئيسي لمكتب العلوم والتكنولوجيا في بلدية جينهوا (منحة رقم 2016-3-005، 2018-3-001d و 2019-3-013).
Name | Company | Catalog Number | Comments |
no | no | no |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved