Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Aquí se presenta un protocolo para construir nomogramas basado en el modelo de regresión proporcional de peligros de Cox y el modelo de regresión de riesgo de la competencia. El método de competencia es un método más racional para aplicar cuando los eventos de la competencia están presentes en el análisis de supervivencia.
El método Kaplan-Meier y el modelo de regresión proporcional de riesgos de Cox son los análisis más comunes en el marco de supervivencia. Estos son relativamente fáciles de aplicar e interpretar y se pueden representar visualmente. Sin embargo, cuando hay eventos de la competencia (por ejemplo, accidentes cardiovasculares y cerebrovasculares, muertes relacionadas con el tratamiento, accidentes de tráfico), los métodos de supervivencia estándar deben aplicarse con precaución y los datos del mundo real no pueden interpretarse correctamente. Puede ser deseable distinguir diferentes tipos de eventos que pueden conducir al fracaso y tratarlos de manera diferente en el análisis. Aquí, los métodos se centran en el uso del modelo de regresión de la competencia para identificar factores de pronóstico significativos o factores de riesgo cuando hay eventos competidores. Además, se establecen nomogramas basados en un modelo de regresión proporcional al peligro y un modelo de regresión competidor para ayudar a los médicos a realizar evaluaciones individuales y estratificaciones de riesgo con el fin de explicar el impacto de factores controvertidos en el pronóstico.
El análisis de supervivencia del tiempo para eventos es bastante común en los estudios clínicos. Los datos de supervivencia miden el intervalo de tiempo desde la hora de inicio hasta la aparición del evento de interés, pero la ocurrencia del evento de interés a menudo está excluida por otro evento. Si hay más de un tipo de punto final, se denominan puntos finales de riesgos de competencia. En este caso, el análisis de peligro estándar (es decir, el modelo de riesgos proporcionales de la causa de Cox) a menudo no funciona bien porque las personas que experimentan otro tipo de evento están censuradas. Las personas que experimentan un evento de la competencia a menudo permanecen en el conjunto de riesgos, ya que los riesgos de la competencia generalmente no son independientes. Por lo tanto, Fine y Gray1 estudiaron la estimación del modelo de regresión para la sub distribución de un riesgo competidor. En un entorno de riesgo competidor, se pueden discriminar tres tipos diferentes de eventos.
Uno mide la supervivencia global (SS) mediante la demostración de un beneficio clínico directo de los nuevos métodos de tratamiento para una enfermedad. El sistema operativo mide el tiempo de supervivencia desde el momento de origen (es decir, el momento del diagnóstico o tratamiento) hasta el momento de la muerte debido a cualquier causa y, en general, evalúa el riesgo absoluto de muerte, sin diferenciar así las causas de muerte (por ejemplo, muerte específica del cáncer (CSD) o muerte no específica del cáncer (no ECS))2. Por lo tanto, el sistema operativo se considera como el punto de conexión más importante. Los eventos de interés a menudo están relacionados con el cáncer, mientras que los eventos no específicos del cáncer, que incluyen enfermedades cardíacas, accidentes de tráfico u otras causas no relacionadas, se consideran eventos de la competencia. Los pacientes malignos con un pronóstico favorable, que se espera que sobrevivan más tiempo, a menudo corren un mayor riesgo de no DCV. Es decir, el sistema operativo se diluirá por otras causas de muerte y no interpreta correctamente la eficacia real del tratamiento clínico. Por lo tanto, el sistema operativo puede no ser la medida óptima para acceder a los resultados de la enfermedad3. Estos sesgos podrían ser corregidos por el modelo de regresión de riesgo de la competencia.
Existen dos métodos principales para los datos de riesgo de la competencia: modelos de peligro específicos de la causa (modelos Cox) y modelos de peligro de subdistribución (modelos de la competencia). En el siguiente protocolo, presentamos dos métodos para generar nomogramas basados en el modelo de peligro específico de la causa y el modelo de peligro de subdistribución. El modelo de peligro específico de la causa se puede hacer para encajar en el modelo de peligros proporcionales de Cox, que trata a los sujetos que experimentan el evento de la competencia como censurados en el momento en que ocurrió el evento de la competencia. En el modelo de peligro de subdistribución introducido por Fine y Gray1 en 1999, tres tipos diferentes de eventos pueden ser discriminados, y las personas que experimentan un evento competidor permanecen en el riesgo establecido para siempre.
Un nomograma es una representación matemática de la relación entre tres o más variables4. Los nomogramas médicos consideran el evento biológico y clínico como variables (por ejemplo, grado tumoral y edad del paciente) y generan probabilidades de un evento clínico (por ejemplo, recurrencia del cáncer o muerte) que se representa gráficamente como un modelo de pronóstico estadístico para un individuo determinado. Generalmente, un nomograma se formula sobre la base de los resultados de los peligros proporcionales de Cox modelo5,6,7,8,9,10.
Sin embargo, cuando hay riesgos de la competencia, un nomograma basado en el modelo Cox podría no funcionar bien. Aunque varios estudios anteriores11,12,13,14 han aplicado el nomograma de riesgo de la competencia para estimar la probabilidad de DCM, pocos estudios han descrito cómo establecer el nomograma basado en un modelo de riesgo de regresión competidora, y no hay ningún paquete existente disponible para lograr esto. Por lo tanto, el método que se presenta a continuación proporcionará un protocolo paso a paso para establecer un nomograma específico de riesgo de la competencia basado en un modelo de regresión de riesgo competidor, así como una estimación de la puntuación de riesgo para ayudar a los médicos en la toma de decisiones de tratamiento.
El protocolo de investigación fue aprobado por el Comité de ética del Hospital Jinhua, Escuela de Medicina de la Universidad de Zhejiang. Para este experimento, los casos se obtuvieron de la base de datos de Vigilancia, Epidemiología y Resultados Finales (SEER). SEER es una base de datos de acceso abierto que incluye datos demográficos, de incidencia y de supervivencia de 18 registros de cáncer basados en la población. Nos registramos en el sitio web del SEER y firmamos una carta de garantía para adquirir los datos de investigación (12296-nov2018).
1. Fuente de datos
2. Instalación y carga de paquetes e importación de datos
NOTA: Realice los siguientes procedimientos basados en el software R (versión 3.5.3) utilizando los paquetes rms15 y cmprsk16 (http://www.r-project.org/).
3. Nomograma basado en el modelo de regresión proporcional de riesgos de Cox
4. Nomograma basado en el Modelo de Regresión de Riesgo Competitivo
5. Análisis de subgrupos basados en la Puntuación de Riesgo de Grupo (GRS)
Características de supervivencia de la cohorte de ejemplo
En la cohorte de ejemplo, se incluyeron en el análisis un total de 8.550 pacientes elegibles y la mediana del tiempo de seguimiento fue de 88 meses (intervalo, de 1 a 95 meses). Un total de 679 (7,94%) pacientes eran menores de 40 años y 7.871 (92,06%) pacientes tenían más de 40 años. Al final del ensayo, 7.483 (87,52%) pacientes seguían vivos, 662 (7,74%) murió a causa de un cáncer de mama, y 405 (4,74%) pacientes murieron debido a ot...
El objetivo general del estudio actual era establecer un nomograma específico de riesgo de la competencia que pudiera describir las enfermedades del mundo real y desarrollar un modelo de evaluación individual conveniente para que los médicos abordaran las decisiones de tratamiento. Aquí, proporcionamos un tutorial paso a paso para establecer nomogramas basados en el modelo de regresión de Cox y el modelo de regresión de riesgo de la competencia y realizar más análisis de subgrupos. 18 intr...
Ninguno
El estudio fue apoyado por subvenciones del programa general de la Fundación de Ciencias Naturales de la Provincia de Zhejiang (número de subvención LY19H160020) y programa clave de la Oficina Municipal de Ciencia y Tecnología de Jinhua (número de subvención 2016-3-005, 2018-3-001d y 2019-3-013).
Name | Company | Catalog Number | Comments |
no | no | no |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados