Identification of mechanisms underlying muscle damage is crucial. Here we present the histological technique for preparing paraffin-embedded and frozen sections of Drosophila thoracic muscles. This allows analysis of muscle morphology and localization of protein and other muscle cell components.
Metabolic disorders are among one of the most common diseases in humans. The genetically tractable model organism D. melanogaster can be used to identify novel genes that regulate metabolism. This paper describes a relatively simple method which allows studying the metabolic rate in flies by measuring their CO2 production.
In-depth analyses of cancer cell proteomes facilitate identification of novel drug targets and diagnostic biomarkers. We describe an experimental workflow for quantitative analysis of (phospho-)proteomes in cancer cell subpopulations derived from liquid and solid tumors. This is achieved by combining cellular enrichment strategies with quantitative Super-SILAC-based mass spectrometry.
Imaging behavior and neural activity over long time scales without immobilization of the animal is a prerequisite to understand behavior. Agarose microfluidic chambers imaging (AMI) can be used to image neural activity and behavior for all life stages of Caenorhabditis elegans.
The present protocol describes a surgical procedure to remove ascending-aortic banding in a rat model of pulmonary hypertension due to left heart disease. This technique studies endogenous mechanisms of reverse remodeling in the pulmonary circulation and the right heart, thus informing strategies to reverse pulmonary hypertension and/or right ventricular dysfunction.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。