A protocol for preparation of graphene-supported microwell liquid cells for in situ electron microscopy of gold nanocrystals from HAuCl4 precursor solution is presented. Furthermore, an analysis routine is presented to quantify observed etching and growth dynamics.
Presented is a protocol for the isolation of human and animal ventricular cardiomyocytes from vibratome-cut myocardial slices. High yields of calcium-tolerant cells (up to 200 cells/mg) can be obtained from small amounts of tissue (<50 mg). The protocol is applicable to myocardium exposed to cold ischemia for up to 36 h.
A novel technique for blood circuit reconstruction in a heterotopic abdominal mouse heart transplantation model is demonstrated.
This protocol presents a new surgical technique of mouse kidney transplantation focusing on a modified arterial anastomosis strategy. A vascular suture technique including a simple and safer ureter-bladder anastomosis method is also presented. These modifications shorten the operation time and improve the success rate of the mouse kidney transplantation procedure.
We built a simulation model to evaluate pump flow characteristics and performance of the single-shaft coaxial motor-pump assembly in electrohydrostatic actuators and investigate the overall efficiency in a wide set of working conditions of the motor-pump assembly experimentally.
A simulation model specifically supporting the preliminary design of an electro-variable displacement pump (EVDP) is developed and partially verified by experiments. The control performance, life, reliability, etc., can all be evaluated using the proposed model, which covers the main performance requirements under the EVDP preliminary design task.
We present a protocol for ex vivo cultivation of human ventricular myocardial tissue. It allows for detailed analysis of contraction force and kinetics, as well as the application of pre- and afterload to mimic the in vivo physiological environment more closely.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。