Neural control and cognitive processes can be studied through eye movements. The VisualEyes software allows an operator to program stimuli on two computer screens independently using a simple, custom scripting language. The system can stimulate tandem eye movements (saccades and smooth pursuit) or opposing eye movements (vergence) or any combination.
A unique tissue engineering method was developed to elongate numerous nerve fibers in culture by recapitulating axon stretch growth; a form of nervous system growth whereby nerves elongate in conjunction with growth of the enlarging body.
Here, we present an ex vivo flow model in which murine cardiac valves can be cultured allowing the study of the biology of the valve.
This report describes a simple, easy to perform technique, using low pressure vacuum, to fill microfluidic channels with cells and substrates for biological research.
This article describes a technique to insert a hollow conduit between the spinal cord stumps after complete transection and fill with Schwann cells (SCs) and injectable basement membrane matrix in order to bridge and promote axon regeneration across the gap.
Atomic force microscopy (AFM) combined with scanning electrochemical microscopy (SECM), namely, AFM-SECM, can be used to simultaneously acquire high-resolution topographical and electrochemical information on material surfaces at nanoscale. Such information is critical to understanding heterogeneous properties (e.g., reactivity, defects, and reaction sites) on local surfaces of nanomaterials, electrodes and biomaterials.
VisualEyes2020 (VE2020) is a custom scripting language that presents, records, and synchronizes visual eye movement stimuli. VE2020 provides stimuli for conjugate eye movements (saccades and smooth pursuit), disconjugate eye movements (vergence), accommodation, and combinations of each. Two analysis programs unify the data processing from the eye tracking and accommodation recording systems.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。