登录

Electromagnetic waves can be reflected; the surface of a conductor or a dielectric can act as a reflector. As electric and magnetic fields obey the superposition principle, so do electromagnetic waves. The superposition of an incident wave and a reflected electromagnetic wave produces a standing wave analogous to the standing waves created on a stretched string.

Suppose a sheet of a perfect conductor is placed in the yz-plane, and a linearly polarized electromagnetic wave traveling in the negative x-direction strikes it. Since the electric field cannot have a component parallel to a perfect conductor's surface, the electric field must be zero everywhere in the yz-plane. The electric field of the incident electromagnetic wave is not zero at all times in the yz-plane, but this incident wave induces oscillating currents on the conductor's surface, giving rise to an additional electric field. The net electric field, which is the vector sum of this field and the incident field, is zero everywhere inside and on the conductor's surface. The currents induced on the conductor's surface also produce a reflected wave that travels out from the plane. The superposition principle states that the total field at any point is the vector sum of the electric fields of the incident and reflected waves, similar to the magnetic field. The superposition of incident and reflected waves generate standing waves.

Equation1

Equation2

Simplifying these expressions provides the points on the wave where the electric field and magnetic field magnitudes are zero. These are called the nodes or nodal planes. Midway between any two adjacent nodal planes are the planes of maximum amplitude; these are the antinodal planes.

The total electric field is a sine function, and the total magnetic field is a cosine function. Therefore, the sinusoidal variations of the two fields are out of phase at each point. The electric field nodes coincide with the antinodes of the magnetic fields and vice versa. Hence, they are 90° out of phase at each point. This is in contrast to a wave traveling in one direction, for which the sinusoidal variations of the electric and magnetic fields are in phase at any particular point.

Tags
Standing Electromagnetic WavesElectromagnetic WavesSuperposition PrinciplePerfect ConductorElectric FieldMagnetic FieldReflected WaveIncident WaveOscillating CurrentsNodal PlanesAntinodal PlanesSine FunctionCosine FunctionPhase Difference

来自章节 33:

article

Now Playing

33.13 : Standing Electromagnetic Waves

Electromagnetic Waves

1.4K Views

article

33.1 : 电磁波

Electromagnetic Waves

8.3K Views

article

33.2 : 产生电磁辐射

Electromagnetic Waves

2.3K Views

article

33.3 : 电磁波谱

Electromagnetic Waves

13.4K Views

article

33.4 : 电磁波动方程

Electromagnetic Waves

900 Views

article

33.5 : 平面电磁波 I

Electromagnetic Waves

3.5K Views

article

33.6 : 平面电磁波 II

Electromagnetic Waves

3.0K Views

article

33.7 : 电磁波的传播速度

Electromagnetic Waves

3.3K Views

article

33.8 : 物质中的电磁波

Electromagnetic Waves

2.9K Views

article

33.9 : 电磁波携带的能量

Electromagnetic Waves

2.7K Views

article

33.10 : 电磁波强度

Electromagnetic Waves

4.2K Views

article

33.11 : 动量和辐射压力

Electromagnetic Waves

1.8K Views

article

33.12 : 辐射压力:问题解决

Electromagnetic Waves

258 Views

article

33.14 : 腔中的驻波

Electromagnetic Waves

780 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。