JoVE Logo

S'identifier

33.13 : Standing Electromagnetic Waves

Electromagnetic waves can be reflected; the surface of a conductor or a dielectric can act as a reflector. As electric and magnetic fields obey the superposition principle, so do electromagnetic waves. The superposition of an incident wave and a reflected electromagnetic wave produces a standing wave analogous to the standing waves created on a stretched string.

Suppose a sheet of a perfect conductor is placed in the yz-plane, and a linearly polarized electromagnetic wave traveling in the negative x-direction strikes it. Since the electric field cannot have a component parallel to a perfect conductor's surface, the electric field must be zero everywhere in the yz-plane. The electric field of the incident electromagnetic wave is not zero at all times in the yz-plane, but this incident wave induces oscillating currents on the conductor's surface, giving rise to an additional electric field. The net electric field, which is the vector sum of this field and the incident field, is zero everywhere inside and on the conductor's surface. The currents induced on the conductor's surface also produce a reflected wave that travels out from the plane. The superposition principle states that the total field at any point is the vector sum of the electric fields of the incident and reflected waves, similar to the magnetic field. The superposition of incident and reflected waves generate standing waves.

Equation1

Equation2

Simplifying these expressions provides the points on the wave where the electric field and magnetic field magnitudes are zero. These are called the nodes or nodal planes. Midway between any two adjacent nodal planes are the planes of maximum amplitude; these are the antinodal planes.

The total electric field is a sine function, and the total magnetic field is a cosine function. Therefore, the sinusoidal variations of the two fields are out of phase at each point. The electric field nodes coincide with the antinodes of the magnetic fields and vice versa. Hence, they are 90° out of phase at each point. This is in contrast to a wave traveling in one direction, for which the sinusoidal variations of the electric and magnetic fields are in phase at any particular point.

Tags

Standing Electromagnetic WavesElectromagnetic WavesSuperposition PrinciplePerfect ConductorElectric FieldMagnetic FieldReflected WaveIncident WaveOscillating CurrentsNodal PlanesAntinodal PlanesSine FunctionCosine FunctionPhase Difference

Du chapitre 33:

article

Now Playing

33.13 : Standing Electromagnetic Waves

Electromagnetic Waves

1.4K Vues

article

33.1 : Ondes électromagnétiques

Electromagnetic Waves

8.5K Vues

article

33.2 : Génération de rayonnements électromagnétiques

Electromagnetic Waves

2.6K Vues

article

33.3 : Le spectre électromagnétique

Electromagnetic Waves

15.6K Vues

article

33.4 : Équation des ondes électromagnétiques

Electromagnetic Waves

984 Vues

article

33.5 : Ondes électromagnétiques planes I

Electromagnetic Waves

3.6K Vues

article

33.6 : Ondes électromagnétiques planes II

Electromagnetic Waves

3.0K Vues

article

33.7 : Vitesse de propagation des ondes électromagnétiques

Electromagnetic Waves

3.3K Vues

article

33.8 : Ondes électromagnétiques dans la matière

Electromagnetic Waves

2.9K Vues

article

33.9 : Énergie transportée par les ondes électromagnétiques

Electromagnetic Waves

2.9K Vues

article

33.10 : Intensité des ondes électromagnétiques

Electromagnetic Waves

4.4K Vues

article

33.11 : Quantité de mouvement et pression de rayonnement

Electromagnetic Waves

1.9K Vues

article

33.12 : Pression de rayonnement : résolution de problèmes

Electromagnetic Waves

309 Vues

article

33.14 : Ondes stationnaires dans une cavité

Electromagnetic Waves

857 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.