JoVE Logo

Iniciar sesión

33.13 : Standing Electromagnetic Waves

Electromagnetic waves can be reflected; the surface of a conductor or a dielectric can act as a reflector. As electric and magnetic fields obey the superposition principle, so do electromagnetic waves. The superposition of an incident wave and a reflected electromagnetic wave produces a standing wave analogous to the standing waves created on a stretched string.

Suppose a sheet of a perfect conductor is placed in the yz-plane, and a linearly polarized electromagnetic wave traveling in the negative x-direction strikes it. Since the electric field cannot have a component parallel to a perfect conductor's surface, the electric field must be zero everywhere in the yz-plane. The electric field of the incident electromagnetic wave is not zero at all times in the yz-plane, but this incident wave induces oscillating currents on the conductor's surface, giving rise to an additional electric field. The net electric field, which is the vector sum of this field and the incident field, is zero everywhere inside and on the conductor's surface. The currents induced on the conductor's surface also produce a reflected wave that travels out from the plane. The superposition principle states that the total field at any point is the vector sum of the electric fields of the incident and reflected waves, similar to the magnetic field. The superposition of incident and reflected waves generate standing waves.

Equation1

Equation2

Simplifying these expressions provides the points on the wave where the electric field and magnetic field magnitudes are zero. These are called the nodes or nodal planes. Midway between any two adjacent nodal planes are the planes of maximum amplitude; these are the antinodal planes.

The total electric field is a sine function, and the total magnetic field is a cosine function. Therefore, the sinusoidal variations of the two fields are out of phase at each point. The electric field nodes coincide with the antinodes of the magnetic fields and vice versa. Hence, they are 90° out of phase at each point. This is in contrast to a wave traveling in one direction, for which the sinusoidal variations of the electric and magnetic fields are in phase at any particular point.

Tags

Standing Electromagnetic WavesElectromagnetic WavesSuperposition PrinciplePerfect ConductorElectric FieldMagnetic FieldReflected WaveIncident WaveOscillating CurrentsNodal PlanesAntinodal PlanesSine FunctionCosine FunctionPhase Difference

Del capítulo 33:

article

Now Playing

33.13 : Standing Electromagnetic Waves

Electromagnetic Waves

1.4K Vistas

article

33.1 : Ondas electromagnéticas

Electromagnetic Waves

8.5K Vistas

article

33.2 : Generación de radiaciones electromagnéticas

Electromagnetic Waves

2.6K Vistas

article

33.3 : El espectro electromagnético

Electromagnetic Waves

15.6K Vistas

article

33.4 : Ecuación de onda electromagnética

Electromagnetic Waves

984 Vistas

article

33.5 : Ondas Electromagnéticas Planas: I

Electromagnetic Waves

3.6K Vistas

article

33.6 : Ondas Electromagnéticas Aéreas II

Electromagnetic Waves

3.0K Vistas

article

33.7 : Velocidad de propagación de las ondas electromagnéticas

Electromagnetic Waves

3.3K Vistas

article

33.8 : Ondas electromagnéticas en la materia

Electromagnetic Waves

2.9K Vistas

article

33.9 : Energía transportada por las ondas electromagnéticas

Electromagnetic Waves

2.9K Vistas

article

33.10 : Intensidad de las ondas electromagnéticas

Electromagnetic Waves

4.4K Vistas

article

33.11 : Momento y presión de radiación

Electromagnetic Waves

1.9K Vistas

article

33.12 : Presión de radiación: resolución de problemas

Electromagnetic Waves

309 Vistas

article

33.14 : Olas estacionarias en una cavidad

Electromagnetic Waves

857 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados