Anmelden

Electromagnetic waves can be reflected; the surface of a conductor or a dielectric can act as a reflector. As electric and magnetic fields obey the superposition principle, so do electromagnetic waves. The superposition of an incident wave and a reflected electromagnetic wave produces a standing wave analogous to the standing waves created on a stretched string.

Suppose a sheet of a perfect conductor is placed in the yz-plane, and a linearly polarized electromagnetic wave traveling in the negative x-direction strikes it. Since the electric field cannot have a component parallel to a perfect conductor's surface, the electric field must be zero everywhere in the yz-plane. The electric field of the incident electromagnetic wave is not zero at all times in the yz-plane, but this incident wave induces oscillating currents on the conductor's surface, giving rise to an additional electric field. The net electric field, which is the vector sum of this field and the incident field, is zero everywhere inside and on the conductor's surface. The currents induced on the conductor's surface also produce a reflected wave that travels out from the plane. The superposition principle states that the total field at any point is the vector sum of the electric fields of the incident and reflected waves, similar to the magnetic field. The superposition of incident and reflected waves generate standing waves.

Equation1

Equation2

Simplifying these expressions provides the points on the wave where the electric field and magnetic field magnitudes are zero. These are called the nodes or nodal planes. Midway between any two adjacent nodal planes are the planes of maximum amplitude; these are the antinodal planes.

The total electric field is a sine function, and the total magnetic field is a cosine function. Therefore, the sinusoidal variations of the two fields are out of phase at each point. The electric field nodes coincide with the antinodes of the magnetic fields and vice versa. Hence, they are 90° out of phase at each point. This is in contrast to a wave traveling in one direction, for which the sinusoidal variations of the electric and magnetic fields are in phase at any particular point.

Tags
Standing Electromagnetic WavesElectromagnetic WavesSuperposition PrinciplePerfect ConductorElectric FieldMagnetic FieldReflected WaveIncident WaveOscillating CurrentsNodal PlanesAntinodal PlanesSine FunctionCosine FunctionPhase Difference

Aus Kapitel 33:

article

Now Playing

33.13 : Standing Electromagnetic Waves

Electromagnetic Waves

1.4K Ansichten

article

33.1 : Elektromagnetische Wellen

Electromagnetic Waves

8.3K Ansichten

article

33.2 : Erzeugung elektromagnetischer Strahlung

Electromagnetic Waves

2.3K Ansichten

article

33.3 : Das elektromagnetische Spektrum

Electromagnetic Waves

13.5K Ansichten

article

33.4 : Gleichung für elektromagnetische Wellen

Electromagnetic Waves

901 Ansichten

article

33.5 : Ebene Elektromagnetische Wellen I

Electromagnetic Waves

3.5K Ansichten

article

33.6 : Ebene Elektromagnetische Wellen II

Electromagnetic Waves

3.0K Ansichten

article

33.7 : Ausbreitungsgeschwindigkeit elektromagnetischer Wellen

Electromagnetic Waves

3.3K Ansichten

article

33.8 : Elektromagnetische Wellen in der Materie

Electromagnetic Waves

2.9K Ansichten

article

33.9 : Energie, die von elektromagnetischen Wellen getragen wird

Electromagnetic Waves

2.7K Ansichten

article

33.10 : Intensität elektromagnetischer Wellen

Electromagnetic Waves

4.2K Ansichten

article

33.11 : Impuls und Strahlungsdruck

Electromagnetic Waves

1.8K Ansichten

article

33.12 : Strahlungsdruck: Problemlösung

Electromagnetic Waves

259 Ansichten

article

33.14 : Stehende Wellen in einem Hohlraum

Electromagnetic Waves

780 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten