JoVE Logo

登录

Angular variables are introduced in rotational dynamics. Comparing the definitions of angular variables with the definitions of linear kinematic variables, it is seen that there is a mapping of the linear variables to the rotational ones. Linear displacement, velocity, and acceleration have their equivalents in rotational motion, which are angular displacement, angular velocity, and angular acceleration. Similar to the rotational variables, a mapping exists from Newton's second law of motion with Newton's second law in rotational motion.

For a particle performing a circular motion about an axis passing through the center of the circular path, the net torque is given as

Equation1

This is the rotational analog of Newton's second law of motion. The net torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. The above equation can be written in vector form as

Equation2

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times the angular acceleration.

Equation3

The term I is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending on the sign of the net torque. As per the convention, counterclockwise angular acceleration is positive. If a rigid body rotates clockwise and experiences a positive torque (counterclockwise), the angular acceleration is positive. Newton's second law for rotation relates torque, the moment of inertia, and the rotational kinematics. This is called the equation for rotational dynamics. With this equation, one can solve a whole class of problems involving force and rotation.

Tags

Rotational DynamicsAngular VariablesLinear KinematicsAngular DisplacementAngular VelocityAngular AccelerationNet TorqueMoment Of InertiaNewton s Second LawCircular MotionRigid Body RotationTorque SummationVector FormRotational Kinematics

来自章节 11:

article

Now Playing

11.3 : Equation of Rotational Dynamics

Dynamics of Rotational Motions

7.4K Views

article

11.1 : 力矩

Dynamics of Rotational Motions

14.1K Views

article

11.2 : 净扭矩计算

Dynamics of Rotational Motions

8.8K Views

article

11.4 : 滚动不打滑

Dynamics of Rotational Motions

3.4K Views

article

11.5 : 滚动带滑移

Dynamics of Rotational Motions

4.6K Views

article

11.6 : 旋转运动的功和功率

Dynamics of Rotational Motions

5.0K Views

article

11.7 : 旋转运动的功-能量定理

Dynamics of Rotational Motions

5.6K Views

article

11.8 : Angular Momentum: Single Particle

Dynamics of Rotational Motions

6.0K Views

article

11.9 : Angular Momentum:刚体

Dynamics of Rotational Motions

8.6K Views

article

11.10 : 角动量守恒

Dynamics of Rotational Motions

10.0K Views

article

11.11 : 角动量守恒:应用

Dynamics of Rotational Motions

10.6K Views

article

11.12 : 不对称顶部旋转

Dynamics of Rotational Motions

792 Views

article

11.13 : 陀螺仪

Dynamics of Rotational Motions

2.8K Views

article

11.14 : 陀螺仪:进动

Dynamics of Rotational Motions

3.9K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。