JoVE Logo

Войдите в систему

Angular variables are introduced in rotational dynamics. Comparing the definitions of angular variables with the definitions of linear kinematic variables, it is seen that there is a mapping of the linear variables to the rotational ones. Linear displacement, velocity, and acceleration have their equivalents in rotational motion, which are angular displacement, angular velocity, and angular acceleration. Similar to the rotational variables, a mapping exists from Newton's second law of motion with Newton's second law in rotational motion.

For a particle performing a circular motion about an axis passing through the center of the circular path, the net torque is given as

Equation1

This is the rotational analog of Newton's second law of motion. The net torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. The above equation can be written in vector form as

Equation2

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times the angular acceleration.

Equation3

The term I is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending on the sign of the net torque. As per the convention, counterclockwise angular acceleration is positive. If a rigid body rotates clockwise and experiences a positive torque (counterclockwise), the angular acceleration is positive. Newton's second law for rotation relates torque, the moment of inertia, and the rotational kinematics. This is called the equation for rotational dynamics. With this equation, one can solve a whole class of problems involving force and rotation.

Теги

Rotational DynamicsAngular VariablesLinear KinematicsAngular DisplacementAngular VelocityAngular AccelerationNet TorqueMoment Of InertiaNewton s Second LawCircular MotionRigid Body RotationTorque SummationVector FormRotational Kinematics

Из главы 11:

article

Now Playing

11.3 : Equation of Rotational Dynamics

Dynamics of Rotational Motions

7.4K Просмотры

article

11.1 : Вращающий момент

Dynamics of Rotational Motions

14.1K Просмотры

article

11.2 : Расчет чистого крутящего момента

Dynamics of Rotational Motions

8.8K Просмотры

article

11.4 : Скатывание без скольжения

Dynamics of Rotational Motions

3.4K Просмотры

article

11.5 : Прокатка с проскальзыванием

Dynamics of Rotational Motions

4.6K Просмотры

article

11.6 : Работа и мощность для вращательного движения

Dynamics of Rotational Motions

5.0K Просмотры

article

11.7 : Теорема о рабочей энергии для вращательного движения

Dynamics of Rotational Motions

5.6K Просмотры

article

11.8 : Угловой момент: одиночная частица

Dynamics of Rotational Motions

6.0K Просмотры

article

11.9 : Угловой момент: твердое тело

Dynamics of Rotational Motions

8.6K Просмотры

article

11.10 : Сохранение момента импульса

Dynamics of Rotational Motions

10.0K Просмотры

article

11.11 : Сохранение углового момента: применение

Dynamics of Rotational Motions

10.6K Просмотры

article

11.12 : Вращение асимметричного верха

Dynamics of Rotational Motions

792 Просмотры

article

11.13 : Гироскоп

Dynamics of Rotational Motions

2.8K Просмотры

article

11.14 : Гироскоп: прецессия

Dynamics of Rotational Motions

3.9K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены