JoVE Logo

Zaloguj się

11.3 : Equation of Rotational Dynamics

Angular variables are introduced in rotational dynamics. Comparing the definitions of angular variables with the definitions of linear kinematic variables, it is seen that there is a mapping of the linear variables to the rotational ones. Linear displacement, velocity, and acceleration have their equivalents in rotational motion, which are angular displacement, angular velocity, and angular acceleration. Similar to the rotational variables, a mapping exists from Newton's second law of motion with Newton's second law in rotational motion.

For a particle performing a circular motion about an axis passing through the center of the circular path, the net torque is given as

Equation1

This is the rotational analog of Newton's second law of motion. The net torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. The above equation can be written in vector form as

Equation2

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times the angular acceleration.

Equation3

The term I is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending on the sign of the net torque. As per the convention, counterclockwise angular acceleration is positive. If a rigid body rotates clockwise and experiences a positive torque (counterclockwise), the angular acceleration is positive. Newton's second law for rotation relates torque, the moment of inertia, and the rotational kinematics. This is called the equation for rotational dynamics. With this equation, one can solve a whole class of problems involving force and rotation.

Tagi

Rotational DynamicsAngular VariablesLinear KinematicsAngular DisplacementAngular VelocityAngular AccelerationNet TorqueMoment Of InertiaNewton s Second LawCircular MotionRigid Body RotationTorque SummationVector FormRotational Kinematics

Z rozdziału 11:

article

Now Playing

11.3 : Equation of Rotational Dynamics

Dynamics of Rotational Motions

7.7K Wyświetleń

article

11.1 : Moment obrotowy

Dynamics of Rotational Motions

14.4K Wyświetleń

article

11.2 : Obliczenia użytecznego momentu obrotowego

Dynamics of Rotational Motions

8.9K Wyświetleń

article

11.4 : Toczenie bez poślizgu

Dynamics of Rotational Motions

3.4K Wyświetleń

article

11.5 : Toczenie z poślizgiem

Dynamics of Rotational Motions

4.7K Wyświetleń

article

11.6 : Praca i moc dla ruchu obrotowego

Dynamics of Rotational Motions

5.0K Wyświetleń

article

11.7 : Twierdzenie o energii pracy dla ruchu obrotowego

Dynamics of Rotational Motions

5.6K Wyświetleń

article

11.8 : Moment pędu: Pojedyncza cząstka

Dynamics of Rotational Motions

6.0K Wyświetleń

article

11.9 : Moment pędu: ciało sztywne

Dynamics of Rotational Motions

8.6K Wyświetleń

article

11.10 : Zasada zachowania momentu pędu

Dynamics of Rotational Motions

10.0K Wyświetleń

article

11.11 : Zasada zachowania momentu pędu: zastosowanie

Dynamics of Rotational Motions

10.7K Wyświetleń

article

11.12 : Obrót asymetrycznego wierzchołka

Dynamics of Rotational Motions

793 Wyświetleń

article

11.13 : Żyroskop

Dynamics of Rotational Motions

2.9K Wyświetleń

article

11.14 : Żyroskop: Precesja

Dynamics of Rotational Motions

3.9K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone