JoVE Logo

Iniciar sesión

11.3 : Equation of Rotational Dynamics

Angular variables are introduced in rotational dynamics. Comparing the definitions of angular variables with the definitions of linear kinematic variables, it is seen that there is a mapping of the linear variables to the rotational ones. Linear displacement, velocity, and acceleration have their equivalents in rotational motion, which are angular displacement, angular velocity, and angular acceleration. Similar to the rotational variables, a mapping exists from Newton's second law of motion with Newton's second law in rotational motion.

For a particle performing a circular motion about an axis passing through the center of the circular path, the net torque is given as

Torque equation τ=lα, formula image; relevant to rotational motion, physics education.

This is the rotational analog of Newton's second law of motion. The net torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. The above equation can be written in vector form as

Torque equation τ=Iα; vector notation; physics formula; rotational motion analysis.

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times the angular acceleration.

Static equilibrium equation Στᵢ=Iα; diagram illustrating rotational motion physics concepts.

The term I is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending on the sign of the net torque. As per the convention, counterclockwise angular acceleration is positive. If a rigid body rotates clockwise and experiences a positive torque (counterclockwise), the angular acceleration is positive. Newton's second law for rotation relates torque, the moment of inertia, and the rotational kinematics. This is called the equation for rotational dynamics. With this equation, one can solve a whole class of problems involving force and rotation.

Tags

Rotational DynamicsAngular VariablesLinear KinematicsAngular DisplacementAngular VelocityAngular AccelerationNet TorqueMoment Of InertiaNewton s Second LawCircular MotionRigid Body RotationTorque SummationVector FormRotational Kinematics

Del capítulo 11:

article

Now Playing

11.3 : Equation of Rotational Dynamics

Dinámica de movimientos rotacional

8.2K Vistas

article

11.1 : Par de fuerzas

Dinámica de movimientos rotacional

14.9K Vistas

article

11.2 : Cálculo del par de fuerzas neto

Dinámica de movimientos rotacional

9.0K Vistas

article

11.4 : Rodar sin resbalar

Dinámica de movimientos rotacional

3.5K Vistas

article

11.5 : Rodar con deslizamiento

Dinámica de movimientos rotacional

4.8K Vistas

article

11.6 : Trabajo y potencia para un movimiento rotacional

Dinámica de movimientos rotacional

5.1K Vistas

article

11.7 : Teorema trabajo-energía para un movimiento rotacional

Dinámica de movimientos rotacional

5.7K Vistas

article

11.8 : Momento angular: partículas individuales

Dinámica de movimientos rotacional

6.1K Vistas

article

11.9 : Momento angular: cuerpo rígido

Dinámica de movimientos rotacional

8.6K Vistas

article

11.10 : Conservación del momento angular

Dinámica de movimientos rotacional

10.2K Vistas

article

11.11 : Conservación del momento angular: aplicación

Dinámica de movimientos rotacional

10.8K Vistas

article

11.12 : Rotación de la parte superior asimétrica

Dinámica de movimientos rotacional

851 Vistas

article

11.13 : Giroscopio

Dinámica de movimientos rotacional

2.9K Vistas

article

11.14 : Giroscopio: precesión

Dinámica de movimientos rotacional

4.0K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados