Method Article
荧光寿命成像(FLIM的)已经成为一项关键技术,对图像的环境和特定蛋白质在活细胞染料的相互作用。 FLIM的荧光分子转子允许映射在活细胞中的粘度。
扩散往往是化学反应或生物过程的速率决定的一个重要一步,并在广泛的细胞内事件的作用。粘度是影响分子和蛋白质扩散的关键参数之一,并已与粘度变化在细胞水平上对疾病和故障。1-3方法来衡量散装粘度发达,成像微粘度仍然是一个挑战。微观物体,如单细胞的粘度地图,直到最近一直难以取得。测绘与荧光技术的粘度是有利的,因为类似的其他光学技术,它是微创,非破坏性,可应用于活细胞和组织。
荧光分子转子表现出荧光寿命和量子产率,这是其微粘度的功能。4,5分子内扭转或旋转导致从激发态返回到基态非辐射衰变。粘性环境减缓这种旋转或扭曲,限制访问这个非辐射衰变途径。这导致的荧光量子产率和荧光寿命的增加。改性疏水的肾上腺素染料作为荧光分子转子的荧光寿命成像(FLIM的)表明,这些探针的荧光寿命是其环境的微粘度的功能。6-8 A与溶剂的粘度产量的荧光寿命的对数图一条直线,服从福斯特·霍夫曼方程。9此图也可作为校准曲线转换成粘度的荧光寿命。
经过修改后的肾上腺素荧光分子转子活细胞的培养,点状染料分布观察荧光图像。在日获得的粘度值e在活细胞puncta高于水的100倍左右,和细胞质。6,7时间分辨荧光各向异性测量产生旋转相关时间,在与这些大型的微粘度值一致。测绘荧光寿命是独立的荧光强度,从而使分离探针浓度和粘度的影响。
总之,我们已经开发出一种务实和灵活的方法来映射基于荧光分子转子FLIM的细胞中的微粘度。
没有什么不同强度的荧光显微镜聚焦或宽领域的FLIM的样品制备的协议。其次是数据采集,数据分析的主要任务,即从原始数据中提取的荧光寿命。一旦这些已经获得的数据的解释,有助于验证或伪造的假设。
1。染色细胞与分子转子
2。 FLIM的,在细胞中的荧光分子转子
图1时域使用AC FLIM的实验安排。onfocal激光扫描显微镜。
3。代表结果
荧光衰变测量甲醇/甘油混合物的粘度增加,荧光分子转子如图。 2。是单指数荧光衰减,荧光寿命作为粘度的功能显着变化。它增加了从甲醇约300 PS(粘度0.6 CP)95%甘油(粘度950 CP)在3.4纳秒。
图2。肾上腺素-C的荧光衰变型材甲醇/甘油的混合物,不同粘度12 6。
数校准情节的荧光寿命τ与粘度η为荧光分子转子图。 3。福斯特·霍夫曼方程9的要求,它是一条直线
其中 k是radiativé速率常数,Z和 X是常数,0
其中 x是直线的梯度。
图3。的日志荧光寿命比日志粘度积肾上腺素-12产量直线按照福斯特霍夫曼方程。
观察活细胞的培养与荧光分子转子状染料分布的荧光图像。 HeLa细胞培养与细观取代肾上腺素染料FLIM的图像显示在图。 4。可以充分使用一个单一的指数衰减模型拟合图像的每个像素中的荧光衰变。
图4。(一)荧光强度和(二)与肾上腺素-12染色HeLa细胞FLIM的图像。明亮,圈点的地区表现出了比其他地区的寿命较短。这个短liftime对应的puncta在较低的粘度,可能是脂滴,根据福斯特霍夫曼方程。
通过绘制每个像素中提取的寿命,我们获得了整个图像的荧光寿命直方图如图。 5。
图5。荧光寿命从细观取代肾上腺素分子转子FLIM的HeLa细胞染色图像的直方图。
FLIM的超过强度为基础的荧光成像提供了一些关键的优势。它可以报告光物理,是很难或不可能通过荧光成像观察的事件,因为它可以从荧光浓度的影响,他们分开。这是映射成像荧光分子转子内的粘度特别有用。荧光寿命可以很容易地被转换成使用粘度校准图,如图所示。 3,荧光分子转子的浓度无关。
FLIM的有可能是复杂的工件数据的解释。10器乐文物包括散射光,这将显示为荧光衰变开始上的高峰,可以用很短的衰减时间混淆,或后的小峰IRF的,可能会导致显微镜内部的反射。这些散射光可以认定为文物等因为他们可以区分光谱歧视 - 他们总是在激发光波长相同。记住,在空气中,光在1纳秒30厘米,有助于查明反射的起源。
过滤器或玻璃荧光也可以导致一个工件,特别是在低样品的荧光,但可以很容易地确定没有样品测量:如果衰减在这种情况下取得的,它是由于仪器无关与样品!另一方面,注意样品自发荧光,也可能有助于荧光衰变。
在时间相关单光子计数(的TCSPC),时间幅度转换器(TAC)的非线性可能会导致贫穷的配合,但可以通过阻断激发和环境光,如从传输的光源照射到样品标识测量时间。应该是恒定的背景获得图像的每个像素。从一个固定的背景发生偏差的地区,绝不会产生一个不错的选择,应避免测量,如果他们不能被淘汰的TCSPC卡通过调整参数。
一个臭名昭著的TCSPC神器是光子的堆积,这是由光子的检出率过高造成的。11,12这导致只有第一个光子被超时,忽略任何后续的光子,因为电子是忙碌的时间和处理的第一个光子。堆积导致的荧光寿命缩短,最好的办法来避免这种光子计数率保持在约1%的激光重复率。
展望
有FLIM的各种实现,并根据不同的应用,每个人都有其优点和缺点。13理想的荧光显微镜下将收购整个多维荧光emissio列印强度,位置,寿命,波长和偏振单光子探测灵敏度,最大的空间分辨率和最小采集时间在一个单一的测量,轮廓。目前有没有这个功能的独特组合技术,构建一个仪器开发仍然是一个挑战。重要问题的新的物理技术在细胞生物学中的应用往往是意外的发现的路径,还有很长的路要走之前,我们已接近饱和的能力,为细胞生物学荧光成像。事实上,如寿命,频谱和偏振,以及更迅速地在更高的空间分辨率的三维成像,荧光成像参数,一定要揭示细胞生物学的新的方面。
没有利益冲突的声明。
的MKK感谢英国工程和物理科学研究理事会(EPSRC)生命科学的个人奖学金的接口方案。我们也想承认由英国生物技术和生物科学研究理事会(BBSRC)的资金。
样品用荧光分子转子
硬件:
倒徕卡TCS SP2的共焦扫描显微镜
相干米拉900钛蓝宝石飞秒激光与1威尔第V6泵激光或滨松PLP-10 470皮秒脉冲激光二极管激发光源
贝克尔与Hickl SPC 830板,在3GHz的奔腾IV,1GB RAM与Windows XP的计算机
贝克尔与Hickl水冷头PMC100-01探测器的基础上H5773P-01滨松光电倍增管安装在显微镜的x1端口,或混合探测器
DCC 100探测器控制模块
软件:
三2月14日或由贝克尔和Hickl SPCImage 2.8
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。