Method Article
我们引进的粒度均匀,并组成控制肿瘤球体的协议大数代(几千到几十万),使用市售微孔板。
肿瘤球状体正日益被视为一个重要的体外模型中对肿瘤细胞在三维空间中的行为。比传统的贴张文化更加生理有关,他们更准确地概括了复杂性和目前的实际肿瘤的相互作用。为了利用这一模型,以更好地评估肿瘤生物学,或新的治疗剂的功效,这是必要的,以便能够重复地产生球状体,以受控的方式并在显著号码。
该AggreWell系统由金字塔形微孔的高密度阵列,成单细胞悬浮液进行离心分离的。细胞的数量聚类在各微孔的底部,并涉及不同的细胞类型的数量和比率仅依靠由实验者引入悬浮液的性质。因此,我们能够生成任意大小和组成的肿瘤与球体出需要修改底层平台技术。反过来数百每培养面积的平方厘米的微孔确保极高的生产水平可以通过一个简单的,非人工密集的过程来实现。因此,我们预计,该协议将是广泛有益的研究人员在肿瘤球体领域。
有越来越多的证据体,肿瘤细胞有不同的行为在三维培养物比它们在塑料培养时以及确定在常规组织培养平台的治疗剂时,转变到多种生理上相关的系统1可能会失去功效。因此,需要研究癌症细胞的行为在这些条件下,既要深入了解其潜在的生物,并且还增加过渡的新的治疗剂的筛选设施到诊所的成功率。一个有用的模型系统,具有悠久的历史采用被称为肿瘤球体1,2癌细胞的三维集群。理想情况下,技术球体的形成将允许生产大量均匀的球体,其大小和组成由实验者所控制的。而悬滴和孔板接近3,4能够满足其中的一些重quirements,吞吐量一般是有限的,并且产生大量的球状物变得劳动密集的任务。
我们最近开发了一个系统,以解决在再生医学领域5类似的挑战。在一系列密集微米级孔的用人被迫聚集( 见图1),该方法允许球状体的生成从任意数量的细胞,包括多种细胞类型6的混合物,以及各种生物材料7的掺入。球状体形成大量-几千到几十万或更多-而可以立即提取或保持在其上,形成具有至少一个8到2(未发表的观察)周培养基交换的微孔。因此,该系统非常适合于大量的均匀和可再现的肿瘤球状体的产生为EFFE的评估ctiveness新型抗肿瘤药物或生物的基本调查。
注:微孔板中可用不同的格式,这取决于所期望的结果。规格以及对细胞应与每种格式中使用的最小和最大数目的近似的准则示于表1中 。较小的微孔逐渐变细至一尖点,并且因此不存在下的大小限制,虽然球状体之间的变异性变得在较小的尺寸更显著。常规生产的球状物由平均每少至20个细胞的是直接的8。较大微孔尺寸没有完全锥形的,因此试图以形成由小数量的细胞球状体可导致在各微孔多个较小的球状体。由于表面性质略有不同,使用AggreWell 400EX板时,准备用表面活性剂溶液(步骤1.2)是不可选的。
该协议是基于使用AggreWell 400板 - 为其他格式的利弊ULT 表1。细胞在每孔加载的数量乘以它包含由细胞被群集的每个球体的数目微孔的数目来确定。例如,为了产生从1000个细胞每个球状体,每孔必须装入(1200倍球体1,000个细胞每=)1.2×10 6个细胞。细胞密度必须计算给定的细胞将在0.4毫升的体积被加载。因此,对于从各1000个细胞形成的球状体的例子中,1.2×10 6细胞在0.4毫升转化为每毫升3×10 6个细胞的密度。
1。准备微孔以接收细胞
2。细胞的准备
注:细胞制备的细节将有所变化与所研究的特定的细胞类型。然而,我们观察到这些条件是有效的与广泛的细胞,包括这里所讨论的线路,以及人类和鼠胚胎干细胞(ESC),人的诱导多能干细胞(IPSC),成纤维细胞,假定原始内胚层的,和基质细胞。其他团体已采用此系统成功用于广泛的应用范围包括从间充质干细胞的软骨9,标准化的一代从多能干细胞10的神经前体,在肝细胞11和在山椒12脊髓再生的评估毒理分析。与HT29细胞工作的具体协议如下所示。
3。球体的形成
注:球体可以在各种介质中的制剂产生,但是初步试验应进行使用,其中所述细胞进行培养,以区分从改变介质组合物的后果过渡到三维培养系统的后果的介质。
注:如果单元格不均匀分布的证据可见,它可能需要将少量的润滑,以板架在枢轴点 - 与离心机制造商的说明进行咨询。
注意:一旦细胞已被离心分离成微孔,它们是合理的电阻tant要洗出从板的轻微运动。应避免导致介质的晃荡突然动作,但该板从离心机到显微镜或培养箱转移不应导致显著细胞位移。
可以容易地产生和提取到的悬浮培养从别共解剖起源多种肿瘤细胞系的球状体, 图3示出了一致的尺寸控制得到通过这种方法,用各条件下高度均匀的球体种群。在行为上清除行间的差异也可见,与HT29结肠癌细胞和TE6食管癌细胞形成密集的球体与轮廓分明的界限,而前列腺癌细胞LNCaP引起了那么一致球体不规则边界(见讨论可能的原因)。更强的内力在更连贯的聚集也导致崩溃到一个更对称的形式甚至仍然在其形成的微孔,而LNCaP细胞聚集,特别是在较大的尺寸,明显保留了方形锥体几何微孔。输入的细胞数和所述phy之间的关系所得到的球状体的iCal的大小将依赖于许多变量。根据每个细胞的体积和细胞的雇员的数目的乘积的理论量可以通过细胞的损失,这反过来又可以包括细胞内的单细胞悬液阶段损失,以及从过小的聚集体造成的损失降低数字邻居的不足,并从由于运输中的核心局限性坏死和过大的聚集体。大小也将通过在聚合过程中可能出现的任何细胞增殖的影响。因为这些参数会有所不同细胞系的细胞系,如特定物理尺寸的球粒所需细胞,介绍了正确数量的必须通过实验确定。作为第一近似值,预计球体直径以增加与掺入的细胞数的立方根- 例如在细胞的数目的8倍的增加应该导致球体直径增加一倍。
_content"FO:保持together.within页="总是">50665fig2highres.jpg"SRC ="/ files/ftp_upload/50665/50665fig2.jpg"/>
图2。细胞聚集成球状体的组装。球体从每个七百HT29细胞形成。立即离心后(A)中,细胞被松散地聚集在各微孔的底部。注意,该簇被朝右下方在这种情况下,均匀地偏移。这是可以接受的簇大小保持在阵列中是一致的。如果显著簇大小的差异是从阵列的一侧看到对方,参见附注在步骤3.5。培养24小时后(B),细胞间粘附力所造成的簇聚集并形成连贯的球状体,然后可将其提取的(C)。
转/> 图3。在微孔板产生的球体。从球状体形成七百(A,C,E)或一千五百(B,D,F)的 HT29结肠癌细胞(A,B),前列腺癌细胞LNCaP(C,D)或TE6食管癌细胞(E,F)。注意球状体的稠度的制剂中,并且还细胞系之间的变化 - 尤其是宽松的LNCaP聚集体相比,更密集的HT29和TE6细胞。标尺为200微米。
微孔格式 | |||
AggreWell 400 | AggreWell 40EX | AggreWell 800 | |
微孔宽度(al;color:#000000;background-color:#ffffff;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;">µm ) | 400 | 400 | 800 |
每平方厘米的微孔 | 625 | 625 | 156.25 |
每孔微孔 | 1,200 | 4,700 | 300 |
最小的细胞每微孔* | N / A | N / A | 2000 |
每个微孔的最大细胞* | 2,000 | 2,000 | 10,000 |
最小的细胞,每孔* | N / A | N / A | 6×10 5个 |
每孔最大细胞* | 2.4×10 6个 | 9.4×10 6个 | 3×10 6个 |
1.1.1 - 70%乙醇的体积(ml) | 0.5 | 2.0 | 0。5 |
1.2.1 - 冲洗液体积(ml) | 0.5 | 2.0 | 0.5 |
3.2 - 中预压量(ml) | 0.4 | 1.6 | 0.4 |
3.5 - 电池装载量(ml) | 0.4 | 1.6 | 0.4 |
*每微孔细胞的数量只是一个近似值作为该值将与所使用的特定细胞的大小而变化,并且应该根据经验确定 |
表1中。 AggreWell选择和协议的修改。
We have established a system whereby large numbers of uniform spheroids may be generated from multiple cell lines from different sources. We have yet to encounter an adherent cell line that does not form spheroids under these conditions. We have previously observed cell loss in populations prone to anoikis5,8, however to date this issue has not arisen with tumor lines. The system is arbitrarily scalable with surface area, with behavior consistent across microwells in 24-well and 6-well format, as well as prototype bioreactors containing 50,000 microwells each presently under development.
Should spheroid asymmetry be a concern, the incubation time in step 4.8 may be increased to two or three days. Spheroids may also be incubated for a period after extraction from the microwells to increase symmetry, however in this case care must be taken to keep culture densities sufficiently low, as spheroids in contact with one another will often fuse into larger structures. For this reason, we have previously maintained cultures within the microwells in which the aggregates were formed, with the primary limitation being the size of the spheroid. This in turn is a function of both growth rate and initial size8, and if extended culture within the microwell plate is planned, this should be considered in advance. Options to prevent overgrowth, should it occur, include either starting with smaller spheroids, or employing the larger microwells of the AggreWell 800 plate.
Should spheroids fail to increase in coherence over time, one potential cause may be cell death. Particularly in larger aggregates of highly metabolically active cells, mass transport limitations on the delivery of oxygen and essential nutrients can result in a necrotic core2 - thus a non-cohesive spheroid may simply be a consequence of excessive cell death. Alternatively, measurements of the mechanical cohesion of spheroids have been used to assess intercellular binding forces, in relationship to the metastatic potential of a given cell line13. It would be interesting to investigate the relationship between spheroid shape and metastatic potential, perhaps using morphometric parameters such as roundness and perimeter to area ratio.
In addition to investigating the mechanical and morphometric properties of spheroids, assembly in the microwell system permits large-scale production of mixed-composition spheroids, consisting of combinations of multiple cell types and / or biomaterials6,7. The interactions of tumor cells with other cell types are important to more closely model the behavior of tumors in vivo14, thus it may be of interest to generate spheroids from tumor cells in combination with fibroblasts and endothelial cells, for example. Microparticles of various biomaterials may also be incorporated, and can affect spheroid properties both directly through their interactions with cells7,15, and also as reservoirs for the controlled release of growth factors and cytokines into the interior of the spheroid16.
If there is any concern about sterility, for example when working with an microwell plate in which some wells have previously been used, that may have spent some time in an incubator as part of a previous experiment, the wells may be resterilized with 70% ethanol in water.
Once spheroids have been formed, they may also be separated from residual unincorporated cells by passing the suspension over a cell strainer. Individual cells will pass through, while the spheroids will be retained. If the spheroid is suspected of shedding potentially metastatic cells over the course of culture, it may be desirable to perform this procedure multiple times - initially to remove unincorporated cells, and subsequently to isolate purified populations of the cells given off by the spheroids.
Ungrin博士拥有财务利益的AggreWell技术作为一个发明家。
This work was funded by the University of Calgary, under a new investigator start-up grant to Dr. Ungrin.
Name | Company | Catalog Number | Comments |
AggreWell 400 plate | StemCell Technologies Inc. | 27845/27945 | |
Rinsing Solution | StemCell Technologies Inc. | 07010 | |
Cell strainer (37 µm) | StemCell Technologies Inc. | 27215 | |
PBS | VWR / LONZA | CA12001-676 | |
Trypsin-Versene (EDTA) | VWR / LONZA | CA12001-660 | |
DMEM | VWR / LONZA | CA12002-212 | |
FBS | VWR / LONZA | CA-95042-112 | |
TrypLE | Invitrogen / Life Technologies | 12605010 | |
Inverted microscope | VWR / Motic | CA19000-610 | |
Allegra X15R centrifuge with carriers for standard well plates | VWR / Beckman | CABKA99465, CABK369704, CABK392806 | |
Laminar flow biosafety cabinet | ESBE / Baker | BKR-SG603AHEUVSP |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。