需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
hPSCs的分化走向多向成体组织的能力开辟了新的途径来治疗从谁,涉及心血管,肝,胰腺和神经系统,严重的1-4患有疾病的患者。从hPSCs派生的各种细胞类型也将提供强大的移动平台,疾病模型,基因工程,药物筛选和毒理试验1,4。确保其未来的临床药理及应用的关键问题是大量的临床级hPSCs通过体外细胞培养的一代。然而,目前的文化系统是不足或固有可变的,涉及hPSCs为菌落5,6各馈线和无饲养层培养。
殖民地式增长的hPSCs股的内细胞团哺乳动物早期胚胎(ICM)的许多结构特征。将ICM容易分化成三个胚层因为在异构信号梯度的存在,多细胞环境。因此,收购异质性在胚胎发育早期被认为是分化的必要过程,但HPSC文化的不必要的功能。在HPSC文化的异质性往往被过度凋亡信号和自发分化,由于不理想的生长条件引起的。因此,在集落类型的文化,异质细胞通常在7,8菌落的周围观察到。它也已表明,细胞在人胚胎干细胞(hESC细胞)菌落表现出不同反应到的信号分子,如BMP-4 9。此外,集落培养方法由于不可控的增长率及凋亡信号通路6,9产生低电池产量以及极低的电池回收率从冷冻保存。在最近几年,各种悬浮培养物已被开发用于培养hPSCs,particul阿尔利扩张的馈线和无基质条件6,10-13大量hPSCs的。显然,不同的文化系统都有自己的优点和缺点。在一般情况下,hPSCs的异质性表示的主要缺点在菌落型的和聚集的培养方法,这是不理想的用于递送DNA和RNA的物料进入hPSCs遗传工程6中的一个。
显然,有一个迫切需要开发出规避目前的文化方法的一些不足之处的新系统。小分子抑制剂(如ROCK抑制剂Y-27632和JAK抑制剂1)提高单细胞存活的发现铺平了道路分离,HPSC文化14,15。通过使用这些小分子,我们最近开发出一种培养方法基于非集群式分离- hPSCs 9(NCM)的增长。这种新颖的培养方法结合了单细胞传代和高密度电镀方法,使我们能够在一致的增长周期产生大量同质hPSCs无重大染色体异常9。或者,NCM培养可能与不同的小分子和定义矩阵(如层粘连蛋白),以优化的培养方法在广泛的应用中实现。在这里,我们提出几个具体的协议的基础上NCM文化和划定详细程序,基因工程。为了证明NCM协议的通用性,我们还测试了NCM的文化与不同的ROCK抑制剂和单层粘连蛋白亚型521( 即 ,LN-521)。
hPSCs的单细胞为主的非殖民地式单层(NCM)的文化。
1,准备工作
2,协议1(基本):成长HPSC殖民地上料机
3协议2:转换HPSC从殖民地到喂料机NCM
4协议3:转换HPSC殖民地基底膜上以NCM文化
5协议4:在hPSCs的NCM文化LN-521
6,协议5:NCM文化的质粒DNA转染
7,协议6:NCM文化的小分子RNA的转染
NCM文化的一般模式
图1显示出高密度的单细胞接种在ROCK抑制剂Y-27632的存在后hPSCs的动态变化典型的NCM的文化模式。这些形态变化包括电镀,细胞簇的形成,并呈指数生长的细胞,然后进行细胞缩合( 图1A)之后,细胞间的连接。代表性实验表明WA01(H1)的胚胎干细胞,镀成单细胞在1.9×10 5个细胞/ cm 2在10μMY-27632在第1天?...
有两种主要的方法来培养hPSCs 体外 :常规菌落型培养物(细胞上馈线或细胞外基质)和hPSCs作为骨料未经进料器6的悬浮培养物。这两个殖民地式和悬浮培养方法的局限性包括累积的异质性和可继承的表观遗传变化。 NCM培养的基础上,无论是单细胞传代和高密度的细胞接种,代表了一种新的培养方法对HPSC生长6,18。尽管各单细胞传代的方法已被记载在文献中,但他们都不是用?...
The authors declare that they have no competing financial interests.
This work was supported by the Intramural Research Program of the National Institutes of Health (NIH) at the National Institute of Neurological Disorders and Stroke. We would like to thank Dr. Ronald D. McKay for his discussion and comments on this project.
Name | Company | Catalog Number | Comments |
Countess automated cell counter | Invitrogen Inc. | C10227 | Automatic cell counting |
Faxitron Cabinet X-ray System | Faxitron X-ray Corporation, Wheeling, IL | Model RX-650 | X-ray irradiation of MEFs |
MULTIWELL 6-well plates | Becton Dickinson Labware | 353046 | Polystyrene plates |
DMEM | Invitrogen Inc. | 11965–092 | For MEF medium |
Mitomycin C | Roche | 107409 | Mitotic inhibitor |
Trypsin | Invitrogen Inc. | 25300-054 | For MEF dissociation |
DMEM/F12 | Invitrogen Inc. | 11330–032 | For hPSC medium |
Opti-MEM I Reduced Serum Medium | Invitrogen Inc. | 31985-062 | For hPSC transfection |
Heat-inactivated FBS | Invitrogen Inc. | 16000–044 | Component of MEF medium |
Knockout Serum Replacement | Invitrogen Inc. | 10828–028 | KSR, Component of hPSC medium |
Dulbecco’s Phosphate-Buffered Saline | Invitrogen Inc. | 14190-144 | D-PBS, free of Ca2+/Mg2+ |
Non-essential amino acids | Invitrogen | 11140–050 | NEAA, component of hPSC medium |
L-Glutamine | Invitrogen | 25030–081 | Component of hPSC medium |
mTeSR1 & Supplements | StemCell Technologies | 5850 | Animal protein-free |
TeSR2 & Supplements | StemCell Technologies | 5860 | Xeno-free medium |
β-mercaptoethanol | Sigma | M7522 | Component of hPSC medium |
MEF (CF-1) ATCC | American Type Culture Collection (ATCC) | SCRC-1040 | For feeder culture of hPSCs |
hESC-qualified Matrigel | BD Bioscience | 354277 | For feeder-free culture of hPSCs |
Laminin-521 | BioLamina | LN521-02 | Human recombinant protein |
FGF-2 (recombinant FGF, basic) | R&D Systems, MN | 223-FB | Growth factor in hPSC medium |
CryoStor CS10 | StemCell Technologies | 7930 | |
Accutase | Innovative Cell Technologies | AT-104 | 1X mixed enzymatic solution |
JAK inhibitor I | EMD4 Biosciences | 420099 | An inhibitor of Janus kinase |
Y-27632 | EMD4 Biosciences | 688000 | ROCK inhibitor |
Y-27632 | Stemgent | 04-0012 | ROCK inhibitor |
Y-39983 | Stemgent | 04-0029 | ROCK I inhibitor |
Phenylbenzodioxane | Stemgent | 04-0030 | ROCK II inhibitor |
Thiazovivin | Stemgent | 04-0017 | A novel ROCK inhibitor |
BD Falcon Cell Strainer | BD Bioscience | 352340 | 40 µm cell strainer |
Nalgene 5100-0001 Cryo 1 °C | Thermo Scientific | C6516F-1 | “Mr. Frosty” Freezing Container |
Lipofectamine 2000 | Invitrogen Inc. | 11668-027 | Transfection reagents |
DharmaFECT Duo | Thermo Scientific | T-2010-02 | Transfection reagent |
Non-targeting miRIDIAN miRNA Transfection Control | Thermo Scientific | IP-004500-01-05 | Labeled with Dy547, to monitor the delivery of microRNAs |
SMART-shRNA | Thermo Scientific | To be determined | Lentiviral vector |
pmaxGFP | amaxa Inc (Lonza) | Included in every transfection kit | Expression plasmid for transfection control |
Oct-4 | Santa Cruz Biotechnology | sc-5279 | Mouse IgG2b, pluripotent marker |
SSEA-1 | Santa Cruz Biotechnology | sc-21702 | Mouse IgM, differentiation marker |
SSEA-4 | Santa Cruz Biotechnology | sc-21704 | Mouse IgG3, pluripotent marker |
Tra-1-60 | Santa Cruz Biotechnology | sc-21705 | Mouse IgM, pluripotent marker |
Tra-1-81 | Santa Cruz Biotechnology | sc-21706 | Mouse IgM, pluripotent marker |
CK8 (C51) | Santa Cruz Biotechnology | sc-8020 | Mouse IgG1, against cytokeratin 8 |
α-fetoprotein | Santa Cruz Biotechnology | sc-8399 | AFP, mouse IgG2a |
HNF-3β (P-19) | Santa Cruz Biotechnology | sc-9187 | FOXA2, goat polyclonal antibody |
Troponin T (Av-1) | Thermo Scientific | MS-295-P0 | Mouse IgG1 |
Desmin | Thermo Scientific | RB-9014-P1 | Rabbit IgG |
Anti-NANOG | ReproCELL Inc, Japan | RCAB0004P-F | Polyclonal antibody |
Rat anti-GFAP | Zymed | 13-0300 | Glial fibrillary acidic protein |
Albumin (clone HSA1/25.1.3) | Cedarlane Laboratories Ltd. | CL2513A | Mouse IgG1 |
Smooth muscle actin (clone 1A4) | DakoCytomation Inc | IR611/IS611 | Mouse IgG2a |
Nestin | Chemicon International | MAB5326 | Rabbit polyclonal antibody |
TUBB3 | Convance Inc | MMS-435P | Tuj1, mouse IgG2a |
HNF4α (C11F12) | Cell Signaling Technologies | 3113 | Rabbit monoclonal antibody |
Paraformaldehyde (solution) | Electron Microscopy Sciences | 15710 | PFA, fixative, diluted in D-PBS |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。