A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
The capacity of hPSCs to differentiate toward multilineage adult tissues has opened new avenues to treating patients who suffer from severe diseases that involve cardiovascular, hepatic, pancreatic, and neurological systems1-4. Various cell types derived from hPSCs would also provide robust cellular platforms for disease modeling, genetic engineering, drug screening, and toxicological testing1,4. The key issue that ensures their future clinical and pharmacological applications is the generation of large numbers of clinical-grade hPSCs through in vitro cell culture. However, current culture systems are either insufficient or inherently variable, involving various feeder and feeder-free cultures of hPSCs as colonies5,6.
Colony-type growth of hPSCs shares many structural features of the inner cell mass (ICM) of early mammalian embryos. The ICM is prone to differentiate into the three germ-layers in a multicellular environment because of the existence of heterogeneous signaling gradients. Thus, the acquisition of heterogeneity in early embryonic development is considered as a required process for differentiation, but an unwanted feature of hPSC culture. The heterogeneity in hPSC culture is often induced by excessive apoptotic signals and spontaneous differentiation due to suboptimal growth conditions. Thus, in colony-type culture, the heterogeneous cells are often observed in the periphery of the colonies7,8. It has been also shown that the cells in human embryonic stem cell (hESC) colonies exhibit differential responses to signaling molecules such as BMP-4 9. Moreover, colony culture methods produce low cell yields as well as very low cell recovery rates from cryopreservation due to uncontrollable growth rates and apoptotic signaling pathways6,9. In recent years, various suspension cultures have been developed for culturing hPSCs, particularly for expansion of large amounts of hPSCs in feeder- and matrix-free conditions6,10-13. Obviously, different culture systems have their own advantages and disadvantages. In general, the heterogeneous nature of hPSCs represents one of the major drawbacks in colony-type and aggregated culture methods, which are suboptimal for delivering DNA and RNA materials into hPSCs for genetic engineering6.
Clearly, there is an imperative need to develop new systems that circumvent some shortcomings of current culture methods. The discoveries of small molecule inhibitors (such as the ROCK inhibitor Y-27632 and JAK inhibitor 1) that improve single-cell survival pave the way for dissociated-hPSC culture14,15. With the use of these small molecules, we have recently developed a culture method based on non-colony type (NCM) growth of dissociated-hPSCs9. This novel culture method combines both single-cell passaging and high-density plating methods, allowing us to produce large amounts of homogeneous hPSCs under consistent growth cycles without major chromosomal abnormalities9. Alternatively, NCM culture might be implemented with different small molecules and defined matrices (such as laminins) in order to optimize the culture method for wide applications. Here, we present several detailed protocols based on NCM culture and delineate detailed procedures for genetic engineering. To demonstrate the versatility of NCM protocols, we also tested NCM culture with diverse ROCK inhibitors and with the single laminin isoform 521 (i.e., LN-521).
Single-cell based non-colony type monolayer (NCM) culture of hPSCs.
1. Preparations
2. Protocol 1 (Basic): Grow hPSC Colonies on Feeders
3. Protocol 2: Convert hPSC Colonies from Feeders to NCM
4. Protocol 3: Convert hPSC Colonies on Matrigel to NCM Culture
5. Protocol 4: NCM Culture of hPSCs on LN-521
6. Protocol 5: NCM Culture for Plasmid DNA Transfection
7. Protocol 6: NCM Culture for Transfection of MicroRNAs
8. Protocol 7: NCM Culture for Transduction of Lentiviral Vector
A general schema of NCM culture
Figure 1 represents a typical NCM culture schema showing the dynamic changes of hPSCs after high-density single-cell plating in the presence of the ROCK inhibitor Y-27632. These morphological changes include intercellular connections after plating, cellular clusters formation, and exponential cell growth followed by cell condensation (Figure 1A). A representative experiment indicates WA01 (H1) hESCs, plated as s...
There are two major ways to culture hPSCs in vitro: conventional colony-type culture (of cells on feeders or extracellular matrices) and suspension culture of hPSCs as aggregates without feeders6. The limitations of both colony-type and suspension culture methods include accumulated heterogeneity and inheritable epigenetic changes. NCM culture, based on both single-cell passaging and high-density cell plating, represents a new culture method for hPSC growth6,18. Although various single-cell...
The authors declare that they have no competing financial interests.
This work was supported by the Intramural Research Program of the National Institutes of Health (NIH) at the National Institute of Neurological Disorders and Stroke. We would like to thank Dr. Ronald D. McKay for his discussion and comments on this project.
Name | Company | Catalog Number | Comments |
Countess automated cell counter | Invitrogen Inc. | C10227 | Automatic cell counting |
Faxitron Cabinet X-ray System | Faxitron X-ray Corporation, Wheeling, IL | Model RX-650 | X-ray irradiation of MEFs |
MULTIWELL 6-well plates | Becton Dickinson Labware | 353046 | Polystyrene plates |
DMEM | Invitrogen Inc. | 11965–092 | For MEF medium |
Mitomycin C | Roche | 107409 | Mitotic inhibitor |
Trypsin | Invitrogen Inc. | 25300-054 | For MEF dissociation |
DMEM/F12 | Invitrogen Inc. | 11330–032 | For hPSC medium |
Opti-MEM I Reduced Serum Medium | Invitrogen Inc. | 31985-062 | For hPSC transfection |
Heat-inactivated FBS | Invitrogen Inc. | 16000–044 | Component of MEF medium |
Knockout Serum Replacement | Invitrogen Inc. | 10828–028 | KSR, Component of hPSC medium |
Dulbecco’s Phosphate-Buffered Saline | Invitrogen Inc. | 14190-144 | D-PBS, free of Ca2+/Mg2+ |
Non-essential amino acids | Invitrogen | 11140–050 | NEAA, component of hPSC medium |
L-Glutamine | Invitrogen | 25030–081 | Component of hPSC medium |
mTeSR1 & Supplements | StemCell Technologies | 5850 | Animal protein-free |
TeSR2 & Supplements | StemCell Technologies | 5860 | Xeno-free medium |
β-mercaptoethanol | Sigma | M7522 | Component of hPSC medium |
MEF (CF-1) ATCC | American Type Culture Collection (ATCC) | SCRC-1040 | For feeder culture of hPSCs |
hESC-qualified Matrigel | BD Bioscience | 354277 | For feeder-free culture of hPSCs |
Laminin-521 | BioLamina | LN521-02 | Human recombinant protein |
FGF-2 (recombinant FGF, basic) | R&D Systems, MN | 223-FB | Growth factor in hPSC medium |
CryoStor CS10 | StemCell Technologies | 7930 | |
Accutase | Innovative Cell Technologies | AT-104 | 1X mixed enzymatic solution |
JAK inhibitor I | EMD4 Biosciences | 420099 | An inhibitor of Janus kinase |
Y-27632 | EMD4 Biosciences | 688000 | ROCK inhibitor |
Y-27632 | Stemgent | 04-0012 | ROCK inhibitor |
Y-39983 | Stemgent | 04-0029 | ROCK I inhibitor |
Phenylbenzodioxane | Stemgent | 04-0030 | ROCK II inhibitor |
Thiazovivin | Stemgent | 04-0017 | A novel ROCK inhibitor |
BD Falcon Cell Strainer | BD Bioscience | 352340 | 40 µm cell strainer |
Nalgene 5100-0001 Cryo 1 °C | Thermo Scientific | C6516F-1 | “Mr. Frosty” Freezing Container |
Lipofectamine 2000 | Invitrogen Inc. | 11668-027 | Transfection reagents |
DharmaFECT Duo | Thermo Scientific | T-2010-02 | Transfection reagent |
Non-targeting miRIDIAN miRNA Transfection Control | Thermo Scientific | IP-004500-01-05 | Labeled with Dy547, to monitor the delivery of microRNAs |
SMART-shRNA | Thermo Scientific | To be determined | Lentiviral vector |
pmaxGFP | amaxa Inc (Lonza) | Included in every transfection kit | Expression plasmid for transfection control |
Oct-4 | Santa Cruz Biotechnology | sc-5279 | Mouse IgG2b, pluripotent marker |
SSEA-1 | Santa Cruz Biotechnology | sc-21702 | Mouse IgM, differentiation marker |
SSEA-4 | Santa Cruz Biotechnology | sc-21704 | Mouse IgG3, pluripotent marker |
Tra-1-60 | Santa Cruz Biotechnology | sc-21705 | Mouse IgM, pluripotent marker |
Tra-1-81 | Santa Cruz Biotechnology | sc-21706 | Mouse IgM, pluripotent marker |
CK8 (C51) | Santa Cruz Biotechnology | sc-8020 | Mouse IgG1, against cytokeratin 8 |
α-fetoprotein | Santa Cruz Biotechnology | sc-8399 | AFP, mouse IgG2a |
HNF-3β (P-19) | Santa Cruz Biotechnology | sc-9187 | FOXA2, goat polyclonal antibody |
Troponin T (Av-1) | Thermo Scientific | MS-295-P0 | Mouse IgG1 |
Desmin | Thermo Scientific | RB-9014-P1 | Rabbit IgG |
Anti-NANOG | ReproCELL Inc, Japan | RCAB0004P-F | Polyclonal antibody |
Rat anti-GFAP | Zymed | 13-0300 | Glial fibrillary acidic protein |
Albumin (clone HSA1/25.1.3) | Cedarlane Laboratories Ltd. | CL2513A | Mouse IgG1 |
Smooth muscle actin (clone 1A4) | DakoCytomation Inc | IR611/IS611 | Mouse IgG2a |
Nestin | Chemicon International | MAB5326 | Rabbit polyclonal antibody |
TUBB3 | Convance Inc | MMS-435P | Tuj1, mouse IgG2a |
HNF4α (C11F12) | Cell Signaling Technologies | 3113 | Rabbit monoclonal antibody |
Paraformaldehyde (solution) | Electron Microscopy Sciences | 15710 | PFA, fixative, diluted in D-PBS |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved