JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

An ELISA offering a novel quantitative approach is described. It specifically detects disease-associated α-synuclein (αSD) in a transgenic mouse model (M83) of synucleinopathy using several antibodies against either the Ser129 phosphorylated αS form or the C-terminal part of the protein.

摘要

除了 ​​像Western印迹确定的方法,需要新的方法来快速并容易地量化疾病相关α突触核蛋白(αSD)在突触核蛋白病的实验模型。转基因小鼠线(M83)过表达人类A53TαS和自发发展8和22个月的年龄,特点是症状包括体重下降,虚脱,和严重运动功能障碍之间的戏剧性的临床表型,被用于这项研究。为αSD(疾病相关αS)在这些小鼠中的分子分析,将ELISA被设计成特异性量化αS中的D患病小鼠。中枢神经系统在该小鼠模型的分析表明αSD的存在主要是在尾部脑区域和脊髓。有不同的实验条件之间αS 二维分布无显着差异,导致临床疾病, 在uninoculated和正常老化的转基因小鼠在接种与患病小鼠大脑提取物的小鼠。的αSð使用免疫抗体对抗Ser129的特异性检测磷酸化ELISAαS与Western blot和免疫组化基本得到相关。出乎意料的是,类似的结果,观察对αS的C-末端部分的几个其它抗体。 αSD的传播,这表明了"朊病毒样"机制的参与,因此,可以容易地监测和定量用ELISA方法该小鼠模型。

引言

Most current methods for detecting disease-associated α-synuclein (αSD) in experimental models of Parkinson's disease (PD), such as immunohistochemistry or Western blot, are time-consuming and not quantitative. This neurodegenerative disease is characterized by alpha-synuclein aggregation mainly in the form of inclusions containing an aggregated form of the normally soluble presynaptic protein αS1,2 (Lewy bodies and Lewy neurites). Normally only marginally phosphorylated, αS is hyperphosphorylated at its serine 129 residue in these inclusions3 and can be monitored by antibodies specifically directed against Ser129 phosphorylated αS, thus providing a reliable marker of the pathology.

Recent research suggests that a “prion-like” mechanism could be involved in the propagation of αS aggregation within the nervous system of an affected patient4,5. These studies reported the acceleration of a synucleinopathy by inoculating brain extracts containing αSD into a transgenic mouse model (M83) expressing an A53T mutated human αS protein associated with a severe motor impairment occurring as the mice age6. In the same manner, intra-cerebral inoculation of aggregated recombinant αS in the same M83 mouse model confirmed the acceleration of aggregation5. The induction of deposits of phosphorylated αS has also been reported after inoculation of C57Bl/6 wild-type mice with either fibrillar recombinant αS or brain extracts from human DLB patients7,8. Sacino et al.9 recently pointed out that after injection of fibrillar human αS, a widespread and progressive cerebral αS inclusion formation could be induced in M83 mice, but not in E46K transgenic mice or non-transgenic mice in which induced αS inclusions were transient, and mainly restricted to the site of injection. Recent studies on monkeys confirmed propagation of αS aggregates after inoculation of PD-derived extracts in species closer to humans10.

The link between αS alterations and Parkinson’s disease suggest that αSD is a potential biomarker for Parkinson’s disease11. A recent study showed the detection of oligomeric soluble aggregates of α-synuclein in human cerebro-spinal fluid (CSF) and plasma as a potential biomarker for Parkinson’s disease based on a conventional sandwich system ELISA using the same antibody to capture and detect αS12. Based on the same method, multimeric proteins were recognized in biological samples, including the brain, because there are multiple copies of epitopes present in the assembled forms13. Very recently, pathological αS in the CSF of patients with a proven Lewy body pathology was detected using both an ELISA kit with a highly specific antibody against αSD (5G4) and an immunoprecipitation assay14. These methods could differentiate patients with PD/DLB from other types of dementia.

The “prion-like” propagation of αS aggregation was further studied in transgenic mouse model M83 using an ELISA approach that was designed to specifically identify αSD15. In this study, we report the detailed ELISA protocol used to quantitatively detect αSD in sick mice (whether or not inoculated with αSD from sick M83 mice) and more especially in the brain regions specifically targeted by the pathological process in this M83 transgenic mouse model4.

研究方案

所有的程序和涉及动物的协议是根据欧盟86/609 / EEC和来的时候,考虑在动物实验(协议11-0043)道德的法国国家委员会批准。动物饲养和照顾在ANSES的认可实验设施在里昂(许可B 69387 0801)。

1.准备小鼠

  1. 通过腹膜内注射致死剂量的戊巴比妥钠的安乐死的小鼠。
  2. 检索来自小鼠头盖骨的整个大脑,并放置在35毫米的塑料培养皿中在冰上直到萃取。
  3. 提取脊髓型颈椎病。
    :提取αS无论是从一个接矢状切片或从解剖小鼠大脑脑半部,可在表1中列出的实验之后。
ExperimenŤ 老鼠
物(相当于大脑)
生存期
(DPI)
平均/最大生存
(天)
αS 三维检测用ELISA
/ WB / IHC
1 未接种小鼠 441±166 七百三十六分之四百十九 8/8
2 接种小鼠(0.2毫克) 150±52 241分之140 9/9

预防接种在6个星期进行表1中的对M83小鼠进行的实验清单实验2中的纹状体-皮质区与20μl的患病小鼠的脑匀浆(1%重量/体积的葡萄糖5%),后6周龄纯合子小鼠M83异氟烷吸入3%麻醉。 DPI:天后inocul通货膨胀。

2.αS提取脑减半

  1. 矢状切开大脑,得到两半。每个重达半含磨球一个ribolysis管。
  2. 制备含有50mM Tris-盐酸,pH为7.5,750 mM氯化钠,5mM的EDTA,1mM的DTT,1%磷酸和蛋白酶抑制剂鸡尾酒高盐(HS)的缓冲器。添加高盐缓冲到大脑半部,以获得20%(重量/体积)匀浆。
  3. 制备从使用机械均化器大脑半部样品为6.0米/秒的23秒两次。前23秒均化之后,将包含第二23秒周期之前在冰上2分钟的匀浆管。
  4. 离心样品在1000×g离心5分钟以消除未磨制脑片段。回收上清液,分成200微升的等分试样,并保持在-80℃下用于随后的ELISA分析。

3.αS提取解剖脑区

  1. 解剖全脑在35毫米的塑料培养皿在冰上与使用两个forcipes的两端放在一起解剖海马时除外低倍放大镜(8倍放大)。不要超过10分钟,以保持大脑的完整性。将大脑右侧朝上和检索下列顺序的脑区:
    1. 使用置于仅次于灯泡镊子两个嗅球中单独之一。由向下运动的大脑分离。重复此操作,对于在第二灯泡。
    2. 轻轻楔镊子在两皮质之间并移动其转发到促进两个皮层解离。保持大脑到位与一种钳子,使用另一个皮层从海马中分离出来。
    3. 定位钳2毫米皮层下面。保持对钳子轻柔压力直到海马的顶部可见。剥离皮质的第一部分,并重复与第二部分。使用镊子分开的两个皮层起始于海马和移向大脑的前部。
    4. 围绕定位海马的一个开放的镊子。关闭钳在海马的底部,然后轻轻将其删除,恢复尽可能。重复该过程的第二个海马。
    5. 定位低于芨之一的开放镊子轻轻它从大脑中分离出来。使用镊子从纹状体删除任何剩余的皮质。重复此过程的第二纹状体。
    6. 使用镊子至2毫米的小脑的轮廓轻踏以有利于从大脑小脑的分离。将镊子仅次于小脑和通过移动镊子向前卸下。
    7. 使用镊子的宽部,以提高中脑,以便清楚地看到,它加入脑干。使在路口一纵切口,然后取出脑干。
    8. 定位钳脑后面,我Ş由四个圆形结构。切开垂直直到脑已完全从剩余的脑分离。
  2. 准备的变量%(重量/体积)中的HS缓冲器,这取决于可用的组织的量, 即,5%的匀浆为10至30毫克的重量,为30和80毫克之间的重量的10%,和20%匀浆对于高于80毫克的重量。
    1. 加入的HS缓冲区足够的容量来解剖大脑区域获得匀浆的预期%。
    2. 涡和检查组织被完全沉浸在HS缓冲区。
    3. 均匀化从解剖大脑区域或颈髓制备用组织研磨机硼硅玻璃管和两个杵,A和B组成的样品
    4. 倾每个大脑区域直接粉碎成管。将杵进管和收回它。重复此动作大约十倍以离解的组织。然后用杵b到continue研磨组织与另外的20的运动。转移匀浆到1.5毫升管与1毫升移液管。
  3. 离心样品在1000×g离心5分钟,在4℃下,以消除任何未磨制脑片段。检索上清液,它们划分成200μl的等分试样,并保持在-80℃下用于随后的ELISA分析。

4.检测αS的通过ELISA

  1. 稀释涂料抗体0.01纳克/毫升。使用任一抗αS兔多克隆或单克隆的克隆42抗体在50mM的Na 2 CO 3 / 碳酸氢钠缓冲液(pH 9.6)。
  2. 涂层的96孔板,每该涂覆溶液的孔100μl,并在4℃CO / N离开。使用抗αS兔多克隆抗体在用于使用抗体检测syn514 ELISA中的涂布液,克隆42,LB509,AS11,4D6或8A5。使用抗αS单克隆抗体克隆42作为涂布液在与抗pSer129αS检测抗体结合。
    :如果需要的话,板可以保持在4℃下进行一周的ELISA之前进行。
  3. 使用洗板与每孔0.05%吐温20(PBST)洗涤板五次用300μl磷酸盐缓冲盐水。从该步骤起,孵育是在室温。
  4. 加入200μl的PBS T20阻止每口井的缓冲区。摇1小时以150rpm。用PBST洗平板五次。
  5. 稀释脑匀浆(稀释1:100的20%匀浆,1:50 10%匀浆并在PBST中的BSA 1%5%匀浆1:25),并添加100微升到每个孔中。然后孵育2小时,在150转速下晃动。用PBST洗平板五次。
  6. 添加不同αS检测抗体在PBST与BSA 1%的材料清单中提到的稀释液。孵育1小时以150rpm。用PBST洗平板五次。
  7. 无论是添加抗-mouse或抗兔IgG HRP结合物稀释1:8000在PBST中补充有BSA的1%1小时以150rpm摇动。用PBST洗平板五次。
  8. 加入100微升3,3',5,5'-四甲基联苯胺(TMB)溶液至每个孔,并孵育在黑暗中15分钟以150rpm摇动。
  9. 停止加入100微升1N HCl中,每孔然后测量450nm处的吸光度与酶标仪反应。
  10. 进行数据分析,减去在井与除从测量每个所分析的样品的OD值的任何小鼠大脑样品(空白孔)中的所有的试剂中得到的OD值。

5.表位作图

  1. 根据由奥斯曼16中记载的方法进行表位作图。简言之,将包含在硝酸纤维素12个氨基酸的10个重叠氨基酸的人类α突触核蛋白序列的点的肽。
  2. 用50mM的Tris / 150mM的NaCl的缓冲液1方框0含0.05%吐温20和5%奶粉。孵育抗体在阻断以每毫升2微克抗体的浓度的溶液在2-10°CO / N。
  3. 洗膜用的50mM Tris / 150含有0.05%Tween 20的孵育与山羊抗 - 小鼠IgG HRP缀合物mM氯化钠缓冲液pH 10三次。洗用同样的缓冲液然后另一个五次染色用Western印迹TMB染色试剂盒的膜。

6.统计分析

  1. 使用R软件和NLME包进行混合效应回归模型OD。对于每一个对比,进行混合效应回归模型。使用固定的效果,从无症状群体区分症状。
  2. 使用随机效果来反映重复的变异用于给定鼠标。查同方差通过检查残差和如果需要的话,可以使用方差函数来符合皮涅罗和贝茨1组内的错误的方差结构的模型7,设置0.05作为P的意义门槛

结果

在这项研究中,所用的ELISA中具体鉴定疾病相关αS(αSD)在从患病M83小鼠高盐缓冲液中制备脑匀浆。使用抗体特异性识别pSer129αS(p值= 0.0074),酶联免疫吸附容易从年轻(2-5个月大),健康M83小鼠( 图1)区分老,病小鼠(> 8月龄)。其他几个抗体显示类似的高信号(> 0.6 OD)仅在从患病老鼠脑组织匀浆。这是129-140的情况下为4D6(p值= 0.01),LB509(p值= 0.0047)和8A5(P <...

讨论

采用ELISA检测法被证明特别是从小鼠脑组织匀浆检测αSÐ直接的病在M83转基因小鼠模型中。事实上,这ELISA可以很容易地分辨健康M83小鼠在高盐缓冲只使用全脑组织匀浆病鼠M83。

使用这种ELISA成功的结果的最重要的步骤是:正确地制定必要的手巧,以防止在切除损坏解剖老鼠大脑的不同区域;执行样本稀释只在HS缓冲区;和抗体的选择,因为并非所有的抗体将工作在ELISA格式...

披露声明

The authors have no competing interests to disclose.

致谢

作者要感谢达盖拉德的接种和后续的动物实验。这项工作是由ANSES(法语局食品,环境和职业健康安全),并从基金会法国帕金森的赠款支持。

材料

NameCompanyCatalog NumberComments
LB509Abcamab27766Detection antibody 1/2,000
AS11Produced at AnsesDetection antibody 1/1,000
4D6Abcamab1903Detection antibody 1/2,000
PSer129Abcamab59264Detection antibody 1/3,000
PSer129 EP1536YAbcamab51253Detection antibody 1/1,000
syn514Abcamab24717Detection antibody 1/500
clone 42BD Biosciences610787Coating and detection antibody (1/2,000)
8A5Provided by Dr. AndersonDetection antibody 1/2,000
polyclonal anti-αsyn antibodyMilliporeAB5038PCoating antibody
Anti-mouse IgG HRP conjugateSouthern Biotech1010-05
Anti-rabbit IgG HRP conjugateSouthern Biotech4010-05
Goat anti-mouse IgG HRP conjugateDianova115-035-164
HS bufferAdjust at pH 7.5 and keep at 4 °C
  • Tris-HCl 50 mM
Euromedex26-128-3094-B
  • NaCl 750 mM
Euromedex1112-A
  • EDTA 5 mM
EuromedexEU0007-B
  • DTT 1 mM
Sigma43815
PBSAdjust at pH 7.5
  • Na2HPO4 1 mM
Euromedex1309
  • KH2PO4 1.5 mM
Euromedex2018
  • NaCl  137 mM
Euromedex1112-A
  • KCl 2.7 mM
EuromedexP017
Tween 20Euromedex2001-C
BSASigmaA7906
DTT 1 mMSigma43815Stock solution 100 mM, toxic
1% phosphatase cocktailPierce78428
1% protease inhibitor cocktailRoche04 693 132 00150x concentrated
Microplate MaxiSorpTMThermo Scientific442404
Tampon carbonate 50 mM pH 9.6
  • Na2CO3, 10H2O
Sigma713602.86 g/L
  • NaHCO3
Merk63293.36 g/L, pH 9.6
Superblock T20 PBS blocking bufferPierceE6423H10x concentrated
TMBSigmaT0440Used for ELISA
TMBAnalytik Jena AG847-0104200302Used for epitope mapping
HCl 1 NChimie plus40030
RibolyserThermoFast prep FP120keep on ice at this step
Grinding tubesBiorad355-1197
Plate washerTecanColumbus Pro
Plate readerBioradModel 680
Low power magnifier VWR630-10628X magnification
Forceps Dumont#7WPI14097For dissection steps
Transfer pipette 1ml SamsoSamso043231
1.5 ml tubesDutscher033290

参考文献

  1. Goedert, M., Spillantini, M. G., Del Tredici, K., Braak, H. 100 years of Lewy pathology. Nat Rev Neurol. 9, 13-24 (2013).
  2. Waxman, E. A., Giasson, B. I. Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol. 67, 402-416 (2008).
  3. Anderson, J. P., et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 281, 29739-29752 (2006).
  4. Mougenot, A. L., et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging. 33, 2225-2228 (2012).
  5. Luk, K. C., et al. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 209, 975-986 (2012).
  6. Giasson, B. I., et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 34, 521-533 (2002).
  7. Luk, K. C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338, 949-953 (2012).
  8. Masuda-Suzukake, M., et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain : a journal of neurology. 136, 1128-1138 (2013).
  9. Sacino, A. N., et al. Amyloidogenic alpha-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta neuropathologica. 127, 645-665 (2014).
  10. Recasens, A., et al. Lewy body extracts from parkinson's disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. , (2013).
  11. Foulds, P. G., et al. Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson's disease. FASEB J. 25, 4127-4137 (2011).
  12. El-Agnaf, O. M., et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson's disease. Faseb J. 20, 419-425 (2006).
  13. Lee, H. J., et al. Enzyme-linked immunosorbent assays for alpha-synuclein with species and multimeric state specificities. J Neruosci Meth. 199, 249-257 (2011).
  14. Unterberger, U., et al. Detection of disease-associated alpha-synuclein in the cerebrospinal fluid: a feasibility study. Clin Neuropathol. 33, 329-334 (2014).
  15. Betemps, D., et al. Alpha-synuclein spreading in M83 mice brain revealed by detection of pathological alpha-synuclein by enhanced ELISA. Acta Neuropathol. (Berl). 2, 29 (2014).
  16. Osman, A. A., et al. A monoclonal antibody that recognizes a potential coeliac-toxic repetitive pentapeptide epitope in gliadins). Eur J Gastroenterol Hepatol. 13, 1189-1193 (2001).
  17. Pinheiro, J. C., Bates, D. M., Chambers, J. Ch. 5. Mixed-Effects Models in S and S-PLUS. 5, 206-225 (2000).
  18. Mougenot, A. L., et al. Production of a monoclonal antibody, against human alpha-synuclein, in a subpopulation of C57BL/6J mice, presenting a deletion of the alpha-synuclein locus. J Neruosci Meth. 192, 268-276 (2010).
  19. Specht, C. G., Schoepfer, R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2, 11 (2001).
  20. Lee, B. R., Matsuo, Y., Cashikar, A. G., Kamitani, T. Role of Ser129 phosphorylation of alpha-synuclein in melanoma cells. J Cell Sci. 126, 696-704 (2013).
  21. Perrin, R. J., et al. Epitope mapping and specificity of the anti-alpha-synuclein monoclonal antibody Syn-1 in mouse brain and cultured cell lines. Neurosci Lett. 349, 133-135 (2003).
  22. Emmanouilidou, E., et al. Assessment of alpha-synuclein secretion in mouse and human brain parenchyma. PLoS One. 6, e22225 (2011).
  23. Mougenot, A. L., et al. Transmission of prion strains in a transgenic mouse models overexpressing human A53T mutated alpha-synuclein. J Neuropathol Exp Neurol. 70, 377-385 (2011).
  24. Foulds, P. G., et al. A longitudinal study on alpha-synuclein in blood plasma as a biomarker for Parkinson's disease. Sci Rep. 3, 2540 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

99

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。