JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Bacterial pyomelanin production results in increased resistance to oxidative stress and virulence. We report on techniques that can be used to determine inhibition of pyomelanin production and assay the resulting increase in sensitivity to oxidative stress in bacteria, as well as determine antibiotic minimum inhibitory concentration (MIC).

摘要

Pyomelanin is an extracellular red-brown pigment produced by several bacterial and fungal species. This pigment is derived from the tyrosine catabolism pathway and contributes to increased oxidative stress resistance. Pyomelanin production in Pseudomonas aeruginosa is reduced in a dose dependent manner through treatment with 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC). We describe a titration method using multiple concentrations of NTBC to determine the concentration of drug that will reduce or abolish pyomelanin production in bacteria. The titration method has an easily quantifiable outcome, a visible reduction in pigment production with increasing drug concentrations. We also describe a microtiter plate method to assay antibiotic minimum inhibitory concentration (MIC) in bacteria. This method uses a minimum of resources and can easily be scaled up to test multiple antibiotics in one microtiter plate for one strain of bacteria. The MIC assay can be adapted to test the affects of non-antibiotic compounds on bacterial growth at specific concentrations. Finally, we describe a method for testing bacterial sensitivity to oxidative stress by incorporating H2O2 into agar plates and spotting multiple dilutions of bacteria onto the plates. Sensitivity to oxidative stress is indicated by reductions in colony number and size for the different dilutions on plates containing H2O2 compared to a no H2O2 control. The oxidative stress spot plate assay uses a minimum of resources and low concentrations of H2O2. Importantly, it also has good reproducibility. This spot plate assay could be adapted to test bacterial sensitivity to various compounds by incorporating the compounds in agar plates and characterizing the resulting bacterial growth.

引言

Pseudomonas aeruginosa is a Gram negative bacterium that produces a variety of pigments including pyomelanin, a red-brown pigment that helps provide protection from oxidative stress1-4 and binds a variety of compounds, including aminoglycoside antibiotics5-7. Pyomelanin production is caused by a defect in the tyrosine catabolism pathway4,8, either through deletions or mutations of the gene encoding homogentisate 1,2-dioxygenase (HmgA)1,9 or through imbalances in the various enzymes in the pathway10. Homogentisate accumulates due to inactivation of HmgA, and is secreted and oxidized to form pyomelanin11. Production of pyomelanin can be abolished or reduced in a dose dependent manner through treatment with the herbicide 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC)12, which inhibits 4-hydroxyphenylpyruvate dioxygenase (Hpd) in the tyrosine catabolism pathway13. Hpd is required for the formation of homogentisate, and therefore pyomelanin11.

We describe in detail three techniques that were important in our studies of NTBC treatment of pyomelanin producing strains of P. aeruginosa. These techniques include titration of NTBC to determine the concentrations that will abolish or reduce pyomelanin production in laboratory and clinical pyomelanin producing strains, determination of the minimum inhibitory concentration (MIC) of antibiotics when bacteria are treated with NTBC, and the resulting sensitivity to oxidative stress with NTBC treatment.

The titration assay we developed serves two purposes. First, the assay will allow the user to determine if NTBC can abolish or reduce pyomelanin production in the bacterium being studied and at which concentrations. This will allow the user to determine sensitivity to NTBC, since different strains of bacteria may have different sensitivities to this compound, as observed in P. aeruginosa12. Second, the NTBC titration assay will allow the user to determine the appropriate concentration of NTBC to use in subsequent assays, such as antibiotic MIC and oxidative stress response assays, if the goal is to abolish or reduce pyomelanin production and determine the effects of pigment reduction.

The titration assay works because a visible difference in pyomelanin production can be seen in strains treated with NTBC and the differences in pyomelanin production are dose dependent12. Additionally, this technique can be applied to the study of other compounds that may eliminate or enhance pigment production in bacteria.

Antibiotic MICs are used to determine the sensitivity of bacteria to antibiotics. There are several methods to determine MICs, including agar dilution plates and broth dilutions14. Broth dilutions can be performed in small test tubes or in a 96-well microtiter plate. The microtiter plate method of MIC determination described herein will allow the user to test a wide range of antibiotics using a minimum of resources. The assay provides reproducibility as well as flexibility in the number of antibiotics and strains tested by this method. Additionally, with the incorporation of NTBC in the assay, the user can determine if elimination or reduction of pyomelanin production alters antibiotic sensitivity in bacteria that produce pyomelanin.

Bacterial response to oxidative stress can be tested in several ways. The most common methods described are either viable counts of bacteria subjected to oxidative stress for a period of time1, or oxidative stress disc diffusion assays15. These methods tend to use high concentrations of oxidative stressors to examine the effects of oxidative stress in bacteria and results can be quite variable between biological replicates. The viable count assay also tends to use more agar plates than the other methods. The spot plate assay we describe uses low concentrations of H2O2 and allows the user to test the oxidative stress response of multiple strains using a minimum of plates. The assay is also consistently reproducible between technical and biological replicates. As pyomelanin is involved in resistance to oxidative stress, the incorporation of NTBC in the assay allows the user to determine the effects of elimination of pyomelanin production on oxidative stress resistance.

Access restricted. Please log in or start a trial to view this content.

研究方案

1.制备培养基,抗生素,和2- [2-硝基-4-(三氟甲基)苯甲酰基] -1,3-环己二酮(NTBC)

  1. 使LB肉汤(1%胰蛋白胨,0.5%酵母提取物,0.25%NaCl的H 2 O)和分装成适当体积。通过高压灭菌消毒。室温保存。
  2. 达到100ml LB琼脂(1%胰蛋白胨,0.5%酵母提取物,0.25%的NaCl,在H 2 O的1.5%琼脂)的250ml烧瓶中。通过高压釜中,在室温下储存消毒。确保琼脂倒入盘前熔化。
    注:含有100ml的LB琼脂将产生4板保温瓶。 LB琼脂的量可以改变以对应于所需的测定板的数量。
  3. 使PBS(137 mM氯化钠,2.7毫米氯化钾,10毫 Na 2 HPO 4,2mM的KH 2 PO 4)16。通过高压灭菌器或过滤和储存在室温下消毒。
  4. 准备抗生素股票方案的庆大霉素,卡那霉素,一种ð妥布霉素。
    1. 准备适当的抗生素浓度股票为P.假单胞菌菌株含有100mg / ml的庆大霉素,30毫克/毫升卡那霉素,和10毫克/毫升妥布霉素。溶解抗生素在水中,过滤杀菌(0.2微米),并储存在4℃。改变这取决于所研究的细菌的抗生素和浓度。
  5. 准备NTBC股票的解决方案。溶解10毫克NTBC在400微升DMSO中。这就产生了75.9毫米NTBC的浓度。商店NTBC储备溶液在-20℃。解冻溶液在室温下按需要。
    注:不同NTBC的来源有溶解度的差异。确定适当的车辆中,以溶解根据制造商的建议的NTBC和调整步骤1.5相应。

2.细菌菌株的NTBC滴定

  1. 菌株的设置过夜培养来进行测试。加入2ml LB培养基为16×150毫米的试管S(每株一个),接种从每一株1孤立的殖民地。孵育过夜,在37℃通气到组织培养旋转器中的空气培养箱中。
  2. 第二天,准备NTBC的滴定在LB肉汤。使用的初始范围从0到900微米NTBC自不同菌株具有的感光度NTBC差异。
    1. 加入1毫升的LB肉汤到每株4到5支试管(16×150毫米)。
    2. 添加NTBC储液(75.9毫米)的试管(16×150毫米)的范围内的浓度。 见表 1 NTBC浓度和相应的库存量增加至1ml LB肉汤。
  3. 测量过夜培养的OD 600。以OD 600的读数,以消除pyomelanin出现在媒体面前洗的文化。
    1. 通过离心1毫升文化的一个离心16,000 XG 2分钟洗净文化。去除上清,任何松散沉淀的细胞与移液器和悬浮固体细胞沉淀在1毫升LB中
  4. 接种滴定管,在OD 600 0.05。计算接种管所需的洗涤培养的量。
    注:使用清洗培养的接种,因为pyomelanin不应该存在。
  5. 孵育滴定管约24小时,在37℃使用组织培养旋转器中的空气培养箱曝气。
  6. 拍摄滴定管和内和菌株之间比较颜料生产,以确定要用于MIC和氧化应激测定NTBC的量。使用的OD 600读数,以确定pyomelanin的量在无细胞培养物上清液,并确定细胞密度。
    注:在培养物上清液的OD 600比率pyomelanin至细胞可以计算量化与NTBC处理后的差异在pyomelanin生产。

3.抗生素最少INHIBI保守党浓度(MIC)测定在96孔板

  1. 菌株的设置过夜培养要在LB有和没有NTBC测试。
    注:此协议使用300微米NTBC代表级别描述。 NTBC的要使用的适当水平是在步骤2.6确定。
    1. 添加300μMNTBC至2ml LB。加载体(DMSO)等体积的2毫升LB培养基的无NTBC条件。
    2. 使用无菌牙签,接种管与细菌的一个孤立的群体。将有一个文化与NTBC和一种文化,而不NTBC每一株。孵育过夜,在37℃,使用的组织培养旋转器中的空气培养箱曝气。
  2. 第二天,让LB + NTBC和LB + DMSO主解决方案用于设置MIC检测。添加NTBC在600μM,因为这一个浓度将稀释两倍时接种物添加,得到300微米的最终浓度。
    1. 为了测试一个antibi耳一紧张,加上600μMNTBC〜2毫升LB和组合,使NTBC主的解决方案。加载体(DMSO)的等效体积至2ml LB和混合以使无NTBC母液。使用这些解决方案,用于创建抗生素储备溶液以及用于设置稀释系列,在96孔板中。
      注:主溶液制剂将产生额外的解决方案,以弥补移液错误。主溶液可以放大或缩小取决于抗生素和应变测试的数目为必需的。
  3. 准备抗生素解决方案,在LB + NTBC或LB + DMSO主的解决方案。
    注意:在这些溶液中的抗生素浓度应双倍的最终所需的浓度。够溶液应使在一个96孔板100微升转移到四口井。
    1. 制备庆大霉素+/- NTBC原液在64微克/毫升。为了使这个解决方案,增加0.288微升庆大霉素的股票(100毫克/毫升)450微升LB + NTBC或LB + DMSO主解决方案。
      注:庆大霉素为P的最大浓度绿脓杆菌 PAO1是32微克/毫升。
    2. 使卡那霉素+/- NTBC原液在256微克/毫升。为了使这个解决方案中,添加3.84微升卡那霉素股票(30毫克/毫升),以450微升LB + NTBC或LB + DMSO主的解决方案。
      注:卡那霉素的P的最大浓度绿脓杆菌 PAO1为128微克/毫升。
    3. 制备妥布霉素+/- NTBC原液在8微克/毫升。为了使这个解决方案中,添加0.36微升妥布霉素股票(10毫克/毫升),以450微升LB + NTBC或LB + DMSO主的解决方案。
      注:为P.假单胞菌 PAO1,妥布霉素的最大浓度为4微克/毫升。
      注:抗生素和浓度可以调整为细菌进行测试。
  4. 加入100微升每2×抗生素溶液的四个井在96孔板中。将这些解决方案中的行A.对于为例即,庆大霉素应到A4置于A1中,卡那霉素应至A8被放置在A5和妥布霉素应通过A12被放置在A9。 参见1A,用于一个96孔板设置的示意图。
    注意:多个抗生素可以在一个板进行试验,但只有一个应变应该每板进行测试,以消除交叉污染,从其它菌株的潜力。
  5. 添加50微升LB + NTBC或LB + DMSO主溶液的行B至96孔板的小时。确保一个板块是LB + NTBC,一个板块是LB + DMSO。参见图1A。
    1. 使用LB + NTBC在LB + NTBC的抗生素。使用LB + DMSO在LB + DMSO的抗生素。
  6. 用微量转增50微升的解决方案,从行A到B行混合的解决方案,改变枪头执行的抗生素两倍系列稀释液,并转移50微升的解决方案从B行与行C.重复以上步骤,该remaini吴行。稀释G行后,取​​出50微升该行和丢弃的解决方案。使用行H作为一个无抗生素控制细菌的生长。参见图1B。
    注:每个井在排A至G现在包含50微升抗生素的LB + NTBC或LB + DMSO以2X的最终所需的浓度。行H中的LB + NTBC或LB + DMSO没有抗生素。
  7. 测量过夜培养的OD 600。以OD 600的读数,以消除pyomelanin出现在媒体面前清洗所有的文化。
    1. 通过离心1毫升文化的一个离心16,000 XG 2分钟洗净文化。用微量去除上清,重悬细胞沉淀在1毫升LB中
  8. 稀释过夜培养在LB中2.75x10 5 CFU /毫升
    注意:假设一个OD 600单位为1×10 9 CFU /毫升P.相当于铜绿假单胞菌 。 OD以CFU / ml的转换可能是different在其他细菌。
  9. 加入50微升稀释的细菌培养物,以适当的井。
    注:在NTBC生长培养应加入到含有NTBC和培养在DMSO生长应添加到含有的DMSO的孔的孔中。参见图1B。
    1. 添加细菌三眼井每一株和抗生素浓度。加入50微升的LB至第四孔充当细菌污染的控制。参见图1B。
    2. 使用多通道移液器以接种的孔中。保证吸管加入接种物时防止周围井污染提示是井的底部附近。
      注意:添加细菌培养到孔会冲淡抗生素和NTBC浓度的两倍。
  10. 覆盖96孔板用封口膜,并培育约24小时,在37℃下。孵育96孔板静态,在空气培养箱中。
  11. 审查所述板对中的细菌生长的孔中。的MIC是抗生素的最低浓度,其中无细菌生长被认为对于每个菌株的所有三次重复。
    1. 用肉眼检验板的增长或读取用酶标仪集到OD 600。

4.现货板检定的氧化应激反应

  1. 菌株的设置过夜培养将在LB有和没有NTBC按照步骤3.1中所述进行测试。
  2. 第二天,制备含有 H 2 O 2作为氧化应激的LB琼脂平板上。 h的范围 2 O 2的浓度从0到1毫米是一个很好的起点。
    1. 融化LB琼脂瓶。冷媒介在室温下约50℃。
    2. 直接添加 H 2 O 2到冷却介质在所需的浓度。旋流烧瓶混合。 见表 2 h的浓度2 O 2和浓H 2 O 2的体积增加。这些值是基于100 ml的LB琼脂的。
    3. 加入H 2 O 2和火焰表面,以去除气泡后,立即倒入盘子。产率是每100毫升的LB琼脂4板。标记用H 2 O 2浓度的板。
    4. 放置揭示在生物流罩与运行30分钟风扇从板除去多余的水分的板。
      注意:使用它们制备当天的板。如果不这样做,可能会导致数据不一致。
      注:氧化应激,如百草枯可以取代 H 2 O 2在该试验中。用于其它的氧化应激的浓度可以比那些用于H 2 O 2的不同。
  3. 洗净按步骤3.7说明测量外径600过夜培养的。
  4. 规范化的所有一夜之间立方米的OD 600ltures到对于该组的菌株的最低值被测试。P.假单胞菌通常具有约2.5时在LB + NTBC或LB + DMSO过夜生长的OD 600。
    1. 确定培养的稀释培养物以最低的OD 600为1毫升的总体积所需要的体积。例如,如果一个培养具有的OD 600的3和最低的OD 600对于该组的菌株是2.5,执行以下计算:(2.5)(1毫升)=(3)(x)的。 X =0.833毫升。 0.833毫升培养将被放置在一个离心管。
    2. 计算使培养体积至1ml所需LB + NTBC(300μM)或LB + DMSO的量。对于在步骤4.4.1的例子中,加入LB + NTBC或LB + DMSO的量在培养。将0.167毫升(1 ml的总体积 - 0.833 ml的培养物)。使储备溶液LB + NTBC和LB + DMSO的用于这些稀释液根据需要稀释所有菌株在卷上。
    3. 混合的文化和LB + NTBC或LB + DMSO涡旋。
  5. 为了维持培养物在NTBC或DMSO的浓度恒定,在执行PBS + NTBC或PBS + DMSO规格化过夜培养的10倍系列稀释。
    1. 使股票的解决方案PBS + NTBC和PBS + DMSO中。对一组稀释液为一种菌株,混合300μMNTBC或DMSO等体积的PBS,得到的720微升的总体积。缩放这些股票上升或下降取决于有多少株进行了测试。
    2. 标签离心管10 -1至 10 -7系列稀释。添加90微升PBS + NTBC或PBS + DMSO中至适当管中。用PBS + NTBC在LB + NTBC生长的菌株,用PBS + DMSO在LB + DMSO生长的菌株。
    3. 加入10微升培养物,以适当的10 -1稀释管。通过涡旋混合并转移10微升10 -1稀释到10 -2稀释管。重复,直到所有的稀释已PERFORmed指。更改稀释之间的枪头。
  6. 点5微升10 -3的通过10 -7稀释在LB + H 2 O 2的平板式两份每个菌株。使用一个枪头,如果斑点镀大多数稀释至至少稀(10-710-3)。不要翻倒或倾斜板,直到液体干燥成板。
  7. 孵育所述板为24-48小时,在37℃(空气培养箱),根据不同的应变。
    :P。培养24小时后, 铜绿假单胞菌 PAO1将对LB好户型的殖民地。孵育菌株直到他们有菌落大致相同的尺寸PAO1。
  8. 拍摄使用上述一个transluminator CCD照相机的板。任选地,编辑照片的对比度和作物为相同大小。算在每个点的菌落数来确定的变化灵敏度氧化应激。

Access restricted. Please log in or start a trial to view this content.

结果

NTBC滴定

所述NTBC滴定被用来确定是否NTBC能够减少巴斯德pyomelanin生产假单胞菌,并且还确定NTBC的消除或减少pyomelanin生产供额外分析使用的浓度。有可能的变化在不同的重复产生pyomelanin的水平,但总的趋势仍不变。所述NTBC滴定试验也可以修改,以测试可能影响颜料生产中的其他细菌的其它化合物。这将只工作,但是,如果有一个表型改变,可以在视觉上确定或...

Access restricted. Please log in or start a trial to view this content.

讨论

The NTBC titration method described in this protocol will allow the user to determine if NTBC can reduce or eliminate pyomelanin production in bacteria, and determine the concentration of NTBC required. The most critical step in the NTBC titration assay is determining the range of NTBC concentrations to use in the assay. Different strains of P. aeruginosa have different sensitivities to NTBC, and laboratory strains may be more sensitive to NTBC than clinical isolates12 (Figure 2). The...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors declare that they have no competing financial interests.

致谢

The authors thank Dara Frank and Carrie Harwood for their generous contribution of strains. University of Wisconsin Milwaukee Research Foundation holds patent no. 8,354,451; with claims broadly directed to treating or inhibiting the progression of infection of a microorganism in a patient by administering a 4-hydroxyphenylpyruvate dioxygenase-inhibiting compound such as 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC). Inventors are Graham Moran and Pang He. This research was supported by the National Institutes of Health (R00-GM083147). The University of Washington P. aeruginosa transposon mutant library is supported by NIH P30 DK089507.

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC)Sigma-AldrichSML0269-50mgAlso called nitisinone.  Soluble in DMSO.
H2O2Sigma-Aldrich216763-100ML30 wt. % in H2O.  Stabilized.
GentamicinGold BioG-400-100Soluble in H2O.  Filter sterilize.
KanamycinFisher ScientificBP906-5Soluble in H2O.  Filter sterilize.
TobramycinSigma-AldrichT4014-100MGSoluble in H2O.  Filter sterilize.

参考文献

  1. Rodriguez-Rojas, A., et al. Inactivation of the hmgA of Pseudomonas aeruginosa to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology. 155, 1050-1057 (2009).
  2. Keith, K. E., Killip, L., He, P., Moran, G. R., Valvano, M. A. Burkholderia cenocepacia Produces a Pigment with Antioxidant Properties Using a Homogentisate Intermediate. J Bacteriol. 189, 9057-9065 (2007).
  3. Schmaler-Ripcke, J., et al. Production of Pyomelanin, a Second Type of Melanin, via the Tyrosine Degradation Pathway in Aspergillus fumigatus. Appl Environ Microbiol. 75, 493-503 (2009).
  4. Turick, C. E., Knox, A. S., Becnel, J. M., Ekechukwu, A. A., Milliken, C. E. Properties and Function of Pyomelanin. Biopolymers In Tech. Elnashar, M. , 449-472 (2010).
  5. Bridelli, M. G., Ciati, A., Crippa, P. R. Binding of chemicals to melanins re-examined: adsorption of some drugs to the surface of melanin particles. Biophys Chem. 119, 137-145 (2006).
  6. Barza, M., Baum, J., Kane, A. Inhibition of antibiotic activity in vitro by synthetic melanin. Antimicrob Agents Chemother. 10, 569-570 (1976).
  7. Nosanchuk, J. D., Casadevall, A. Impact of Melanin on Microbial Virulence and Clinical Resistance to Antimicrobial Compounds. Antimicrob Agents Chemother. 50, 3519-3528 (2006).
  8. Arias-Barrau, E., et al. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of L-Phenylalanine, L-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida. J Bacteriol. 186, 5062-5077 (2004).
  9. Ernst, R. K., et al. Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa from the airways of young children with cystic fibrosis. Environ Microbiol. 5, 1341-1349 (2003).
  10. Sanchez-Amat, A., Ruzafa, C., Solano, F. Comparative tyrosine degradation in Vibrio cholerae The strain ATCC 14035 as a prokaryotic melanogenic model of homogentisate-releasing cell. Comp Biochem Physiol B Biochem Mol Biol. 119, 557-562 (1998).
  11. Hunter, R. C., Newman, D. K. A Putative ABC Transporter, HatABCDE, Is among Molecular Determinants of Pyomelanin Production in Pseudomonas aeruginosa. J Bacteriol. 192, 5962-5971 (2010).
  12. Ketelboeter, L. M., Potharla, V. Y., Bardy, S. L. NTBC treatment of the pyomelanogenic Pseudomonas aeruginosa isolate PA1111 inhibits pigment production and increases sensitivity to oxidative stress. Curr Microbiol. 69, 343-348 (2014).
  13. Kavana, M., Moran, G. R. Interaction of (4-Hydroxyphenyl)pyruvate Dioxygenase with the Specific Inhibitor 2-[2-Nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione. Biochemistry. 42, 10238-10245 (2003).
  14. Andrews, J. M. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 48, 5-16 (2001).
  15. Nikodinovic-Runic, J., Martin, L. B., Babu, R., Blau, W., O'Connor, K. E. Characterization of melanin-overproducing transposon mutants of Pseudomonas putida F6. FEMS Microbiol Lett. 298, 174-183 (2009).
  16. Sambrook, J., Russell, D. W. Molecular cloning: a laboratory manual. , 3 edn, Cold Spring Harbor Laboratory Press. (2001).
  17. Roy-Burman, A., et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis. 183, 1767-1774 (2001).
  18. Jacobs, M. A., et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 100, 14339-14344 (2003).
  19. Youngchim, S., Pornsuwan, S., Nosanchuk, J. D., Dankai, W., Vanittanakom, N. Melanogenesis in dermatophyte species in vitro during infection. Microbiology. 157, 2348-2356 (2011).
  20. Khajo, A., et al. Protection of Melanized Cryptococcus neoformans Lethal Dose Gamma Irradiation Involves Changes in Melanin's Chemical Structure and Paramagnetism. PLoS ONE. 6, e25092(2011).
  21. Hancock, R. E. W. Hancock Laboratory Methods. , University of British Columbia, Department of Microbiology and Immunology. British Columbia, Canada. Available from: http://www.cmdr.ubc.ca/bobh/methods.htm (2015).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

102 pyomelanin NTBC

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。