JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A protocol for small molecular drug screening based on in-situ synthesis of ultrasmall fluorescent gold nanoclusters (Au NCs) using drug-loaded protein as template is presented. This method is simple to determine the binding affinity of drugs to a target protein by a visible fluorescent signal emitted from the protein-templated Au NCs.

摘要

我们表明,用于确定小药物分子的结合亲和力与靶蛋白通过形成荧光金纳米簇金(Au NCS)加载药物的蛋白质内,基于由在Au纳米晶发射的差分荧光信号一个新的药物筛选方法。白蛋白蛋白质如人血清白蛋白(HSA)和牛血清白蛋白(BSA)被选择作为模型蛋白质。四个小分子药物 (如布洛芬,华法令,苯妥英,和磺胺)不同的结合亲和力到白蛋白的蛋白质进行测试。已经发现,荧光金NC的药物加载白蛋白蛋白质内的变性条件即60℃或在尿素的存在下)下的形成速度比形成在原始蛋白(不含药物)慢。而且,这样形成的NC的荧光强度被发现负相关对这些药物的结合亲和力到白蛋白的蛋白质。特别是,越高药物 - 蛋​​白结合亲和性,较慢的凹NC的形成速率,并因此所得的Au NC的低级荧光强度观察。所得的Au NC的荧光强度因此提供测试了不同药物的相对结合强度的简单量度。这种方法也可延伸通过简单地改变在固定的蛋白质浓度预装在蛋白质的药物含量测定的具体药物-蛋白结合常数(K D)。测量结果与使用其它声望,而是更复杂的方法获得的值相匹配良好。

引言

血清白蛋白例如人血清白蛋白(HSA)和牛血清白蛋白(BSA)是在血浆中最丰富的蛋白,并在维持血液舱的渗透压发挥至关重要的作用。他们也被确认为载体蛋白为低水溶性的小分子,如类固醇,脂肪酸,甲状腺激素,以及各种各样的药物。的结合性例如,结合位点,结合亲和力或强度)这些分子与血清白蛋白的形成在药动学的一个重要课题。1-4几种分析方法已经开发,研究不同的药物的结合性质的血清白蛋白,如X射线晶体学,5,6-核磁共振(NMR),7-11和表面等离子体共振(SPR),12,13等然而,这些方法是通过任一个繁琐和耗时的分析处理( 例如受限的,单晶的X-射线crystallo生长图形研究),专业和昂贵的设备要求(SPR),或需要昂贵的同位素标记(NMR)进行检测。因此,非常需要开发为小分子药物筛选的替代方法以快速,直接的,并且成本效益的方式。

金纳米簇金(Au NCS)是一种特殊类型的纳米材料,其包含几个到几十个金属原子的有尺寸小于2纳米。14-17他们已经吸引了广泛的研究兴趣较小的由于它们的离散和尺寸相关的电子结构,18个, 19和分子状吸收和排放。20-23这种独特的材料性质,特别是强的荧光,已经发现不同的应用,如感测和成像的生物系统。24-32超小型荧光灯的Au NC的可使用的功能的蛋白质合成,如血清白蛋白,如模板33在一个典型的蛋白质为模板合成的Au NC的,一定量的Au盐的被封装的蛋白质内,随后通过蛋白质本身降低。该蛋白质的还原能力是由于构成功能的氨基酸残基例如,酪氨酸),可以通过增加溶液的pH值至碱性激活。解折叠蛋白质结构被认为是对金NC的形成中的关键步骤。这是因为在未折叠蛋白,多种还原剂官能团可以暴露于封装的金盐。蛋白质解折叠,可以通过热处理或暴露于变性剂来实现的。小分子药物的引入也可影响展开的过程也就是修改中点变性温度和展开的焓。34,35所有这些因素的影响,又可以通过荧光的Au纳米晶的形成动力学得到反映并表现在所得的Au NC的荧光强度。36

e_content">此视频通过在更高的温度(60℃)在载有药物的白蛋白的蛋白质合成的Au纳米晶或在变性剂如尿素)所得的Au NC的的荧光强度的存在表明药物筛选的方法是信号读出。首先,金的NC被合成的温度为60℃或在尿素的存在下处理的HSA和BSA的模板,以展示如何蛋白解折叠(通过热处理或变性剂诱导的)影响的Au纳米晶二的形成动力学,的Au NC的合成蛋白质的模板预装不同的药物,及对所得的Au NC的相对荧光强度的载药效果进行了研究,它们提供了相对结合强度的量度。最后,在Au NC-药物筛选协议被修改为药物-蛋白结合常数(K D)的通过改变预装在固定浓度的蛋白质的药物含量定量测定。

研究方案

注意:使用前请咨询了所有相关化学品的安全数据表(SDS)。的药物筛选试验涉及纳米材料的合成和处理相比,他们散装对方也可以有额外的危害。整个实验过程中要实行请确保所有必要的管制措施,包括利用工程控制(通风柜)和个人防护装备(PPE, 例如 ,安全长裤,闭趾鞋,化学防护手套和安全眼罩)的。

1.前处理化学试剂用于药物筛选

  1. 前体金NC的合成
    1. 溶解30毫克的金(III),氯化溶液(99.99%的微量金属的基础上,30%(重量)在稀HCl中)在6.9 ml的超纯水中,制备金(III),氯化溶液15mM的。注意:氯化金溶液腐蚀性和刺激性。穿戴合适的个人防护装备,以避免与眼睛和皮肤直接接触。
    2. 迪在1ml超纯水中ssolve 74毫克的HSA或BSA中,制备74毫克/毫升的蛋白储备溶液。
  2. 药物解决方案
    1. 溶解药物的所需量例如,1.9毫克(一)布洛芬,2.8毫克(二)华法林,2.3毫克(三)苯妥英,和1.5毫克(四)磺胺在20μlDMSO中以制备450毫药物储备溶液。
      注意:二甲基亚砜被选择作为溶剂,因为这些药物是疏水性的,并具有在水中的溶解性差。
  3. 其他试剂
    1. 溶解600毫克NaOH颗粒在10ml超纯水中,制备1.5 NaOH溶液微米。溶解2.4克尿素的2ml超纯水中,制备20的尿素溶液微米。

2.合成蛋白质模板化的Au纳米晶

  1. HSA为模板的Au纳米晶(HSA金NCS)
    1. 放置两个玻璃小瓶,每个都包含在其中的微磁力搅拌棒,在两个独立的温度控制的磁力搅拌rers。
    2. 设置一个磁搅拌器的温度升高到60℃,并标记在它上面的玻璃小瓶作为"60℃";而其他磁力搅拌器保持在室温(RT),其中在它的上面的玻璃小瓶被标记为"RT"。
    3. 加入200微升的HSA溶液,加入200μl超纯水,和200微升金(III),氯化溶液,以在恒定搅拌下每个小瓶(除非另有规定设定为360转),以允许蛋白质模板中的Au离子的封装。
    4. 2分钟后,加入20微升NaOH溶液向每个小瓶,从而激活HSA的还原能力在形成的Au NCS和开始记录的反应时间为0分钟。
    5. 每隔20分钟,吸取50微升溶液从每个样品至384孔黑色板,并测量用酶标仪的发射光谱。典型的扫描设置:λ= 前370,λEM = 410 - 850纳米。
    6. 100分钟后停止磁力搅拌器。
    7. 降温下水槽自来水的玻璃小瓶。注意:玻璃瓶是热的。戴上耐热手套以避免燃烧。
    8. 绘制光电子能谱在所有的时间对每个样品采集的Au纳米晶的形成动力学,在不同的温度条件。
  2. BSA为模板的Au纳米晶(BSA金NCS)
    1. 上放置装有磁力搅拌器的顶部的微磁搅拌棒的玻璃小瓶中。离开温度为室温。
    2. 混合200微升BSA溶液,200微升的尿素,和200微升在不断搅拌下的玻璃小瓶金(III),氯化溶液。
    3. 2分钟后,加入20微升NaOH溶液来激活的BSA的还原能力,以形成金NCS和开始记录的反应时间为0分钟。测量反应混合物的光电发射光谱每小时。
      注意:的BSA-Au纳米晶的光电发射光谱测量较不频繁,因为的BSA-Au NC的形成速度比HSA金在相同温度下的慢由于尿素少效力以展开蛋白质。
    4. 7小时后停止磁力搅拌器。绘制光电子能谱在所有的时间通过尿素变性看到金纳米晶形成动力学。

3.小分子药物筛选

  1. 不同的小分子药物与HSA屏幕相对结合亲和力
    1. 放置5的玻璃小瓶,每个包含在其磁力搅拌棒,在一个温度可控的多磁搅拌器的顶部。标注这些小瓶为a,b,c和分别对于每种药物,即布洛芬,华法令,苯妥英,和磺胺Ð。标签一个纯HSA作为对照。
    2. 加入200μl的HSA向每个小瓶。加入1微升药液到四个相应的小瓶。加入1μlDMSO来控制。接通搅拌器并设置纺丝速度至360转,并培育1小时,以允许药物结合到HSA的完成。
    3. 1小时后,加入200微升Milli-Q水和200微升金(III),氯化溶液,以在恒定搅拌下的每个小瓶中。 10分钟设定在恒定搅拌下将温度至60℃。加入20微升1.5M的NaOH中的每个小瓶中,并开始记录反应时间为0分钟。
    4. 快速绘制50微升从每个小瓶溶液至384孔黑色板和测量的发射光谱(结果标记为0分钟)。记录每个样品每10分钟的发射光谱。收集至少四个光谱在四个不同的时间,即是0,10,20,和30分钟。
    5. 重复步骤3.1.1 - 3.1.4几次以获得具有一致的趋势的结果。停止磁力搅拌器。
    6. 绘制每个样品的时间分辨光电子能谱(一 - d和控制)。确定所有样品和情节的峰值强度对抗中比较迪金纳米晶的形成动力学的时间fferent载药蛋白质的模板。
  2. 测量特定药物与HSA的结合常数
    1. 重复步骤3.1.1 - 3.1.4。更换布洛芬解决方案的药液在四个不同的浓度(包括使用HSA只是没药量的对照样品)。根据药物浓度相应地标记该玻璃小瓶。
    2. 10分钟后,降温下水槽自来水的玻璃小瓶。注意:玻璃瓶是热的。戴上耐热手套以避免燃烧。
    3. 吸取50μl的从每个小瓶上述解决方案的一个384孔黑色板和测量的发射光谱。
    4. 重复步骤3.2.1 - 3.2.3两次以上,得到另一两组结果在不同的药物浓度。
    5. 停止磁力搅拌器。画出光电子谱和分析结果。
      1. 对于每个单独的批次中获得的原始数据,绘制各光电子能谱在软件样本,如OriginPro软件,并找出峰强度。
      2. 计算并绘制相对荧光强度[(I 0 - I)/ I(0)]对药物浓度,哪里I和I 0指的Au NC的形成在载药HSA和HSA的纯的荧光强度分别。
      3. 计算的结合常数通过使用米氏方程的数据拟合到单点结合模型:Y = R 最大值 ×C /(K D + C)中,其中,R 最大值表示最大响应信号,C是配体的浓度和K D是结合常数。在软件中执行此如OriginPro。选择菜单分析拟合非线性曲线拟合,然后从生长/ S形类希尔功能。在设置:功能选择页上,单击适合显示拟合结果。

结果

蛋白折叠为蛋白质为模板的金NC的形成的重要过程,因为蛋白质的多反应性官能团例如,酪氨酸残基)可以暴露于降低封装的金离子,从而加速的Au纳米晶的形成速率。加热和外部变性剂是促进蛋白质折叠过程中的两个共同的装置。 图1展示了加热的影响,并增加外部变性剂对Au NC的形成动力学,使用HSA作为模型蛋白质。加热对Au NC的形成动力学的影响,首先,通过测量光致发?...

讨论

有需要在该方法中,以被突出显示的几个关键步骤。在筛选不同的小分子药物的相对结合亲和力,对协议的步骤3.1.2,3.1.3,3.1.4和关键是要取得良好的结果,显示了相对结合强度相一致的趋势。在这些步骤中,测量添加化学品和绘图反应液的行动应尽快以减少时滞效应和测量添加化学品和绘图反应液应实行以确保一致性的相同的序列。在测量布洛芬与HSA的结合常数的协议,步骤3.2.4朝向杀敌

披露声明

The authors have nothing to disclose.

致谢

Y.N.T. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore for the financial support under the JCO CDA grant 13302FG063.

材料

NameCompanyCatalog NumberComments
Gold (III) chloride solution, 30%Sigma-Aldrich484385Corrosive, irritant
Human serum albumin, 96%Sigma-AldrichA1887
Bovine Serum albumin, 96%Sigma-AldrichA2153
Ibuprofen, 98%Sigma-AldrichI4883 
warfarin, 98%Sigma-AldrichA2250
phenytoinSigma-AldrichPHR1139
sulphanilamide, 99%Sigma-AldrichS9251
dimethyl sulfoxideSigma-AldrichD8418
ureaSigma-AldrichU5128
Sodium hydroxideSigma-Aldrich221465
Magnetic stirrerIKART5
Microplate readerTecanInfinite M200
384-well plateCorning
5 ml air displacement pipetteEppendorf
1,000 μl air displacement pipetteEppendorf
100 μl air displacement pipetteEppendorf
5,000 μl Eppendorf tips
1,000 μl Eppendorf tips
100 μl Eppendorf tips
1.5 ml micro tubeEppendorf
20 ml glass vial with screw cap
4 ml glass vial with screw cap

参考文献

  1. Flarakos, J., Morand, K. L., Vouros, P. High-Throughput Solution-Based Medicinal Library Screening against Human Serum Albumin. Anal. Chem. 77, 1345-1353 (2005).
  2. Vuignier, K., Veuthey, J. -. L., Carrupt, P. -. A., Schappler, J. Global Analytical Strategy to Measure Drug–Plasma Protein Interactions: From High-Throughput to In-Depth Analysis. Drug Discov. Toda. 18, 1030-1034 (2013).
  3. Zsila, F. Subdomain Ib Is The Third Major Drug Binding Region of Human Serum Albumin: Toward The Three-Sites Model. Mol. Pharm. 10, 1668-1682 (2013).
  4. Dalvit, C., Fagerness, P. E., Hadden, D. T. A., Sarver, R. W., Stockman, B. J. Fluorine-NMR Experiments for High-Throughput Screening: Theoretical Aspects, Practical Considerations, and Range of Applicability. J. Am. Chem. Soc. 125, 7696-7703 (2003).
  5. Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., Curry, S. . Structural Basis of the Drug-binding Specificity of Human Serum. 353, 38-52 (2005).
  6. Mao, H., Hajduk, P. J., Craig, R., Bell, R., Borre, T., Fesik, S. W. Rational Design of Diflunisal Analogues with Reduced Affinity for Human Serum Albumin. J. Am. Chem. Soc. 123, 10429-10435 (2001).
  7. Dalvit, C., et al. High-Throughput NMR-Based Screening with Competition Binding Experiments. J. Am. Chem. Soc. 124, 7702-7709 (2002).
  8. Krenzel, E. S., Chen, Z., Hamilton, J. A. Correspondence of Fatty Acid and Drug Binding Sites on Human Serum Albumin: A Two-Dimensional Nuclear Magnetic Resonance Study. Biochemistr. 52, 1559-1567 (2013).
  9. Lee, Y., Zeng, H., Ruedisser, S., Gossert, A. D., Hilty, C. Nuclear Magnetic Resonance of Hyperpolarized Fluorine for Characterization of Protein–Ligand Interactions. J. Am. Chem. Soc. 134, 17448-17451 (2012).
  10. Salvi, N., et al. Boosting the Sensitivity of Ligand–Protein Screening by NMR of Long-Lived States. J. Am. Chem. Soc. 134, 11076-11079 (2012).
  11. Zsila, F. Circular Dichroism Spectroscopic Detection of Ligand Binding Induced Subdomain IB Specific Structural Adjustment of Human Serum Albumin. J. Phys. Chem. 117, 10798-10806 (2013).
  12. Navratilova, I., Hopkins, A. L. Fragment Screening by Surface Plasmon Resonance. ACS Med. Chem. Lett. 1, 44-48 (2010).
  13. Wang, Y., et al. Investigation of Phase SPR Biosensor for Efficient Targeted Drug Screening with High Sensitivity and Stability. Sensor. Actuat. B-Che. 209, 313-322 (2015).
  14. Lu, Y., Chen, W. Sub-Nanometre Sized Metal Clusters: From Synthetic Challenges to The Unique Property Discoveries. Chem. Soc. Rev. 41, 3594-3623 (2012).
  15. Yu, Y., Yao, Q., Luo, Z., Yuan, X., Lee, J. Y., Xie, J. Precursor Engineering and Controlled Conversion for The Synthesis of Monodisperse Thiolate-Protected Metal Nanoclusters. Nanoscal. 5, 4606-4620 (2013).
  16. Jin, R. Quantum Sized, Thiolate-Protected Gold Nanoclusters. Nanoscal. 2, 343-362 (2010).
  17. Jiang, D. -. e. The Expanding Universe of Thiolated Gold Nanoclusters and Beyond. Nanoscal. 5, 7149-7160 (2013).
  18. Aikens, C. M. Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters. J. Phys. Chem. Lett. 2, 99-104 (2010).
  19. Gao, Y., Shao, N., Pei, Y., Chen, Z., Zeng, X. C. Catalytic Activities of Subnanometer Gold Clusters (Au16–Au18, Au20, and Au27–Au35) for CO Oxidation. ACS. ACS Nan. 5, 7818-7829 (2011).
  20. Negishi, Y., Nobusada, K., Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)−Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 127, 5261-5270 (2005).
  21. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C., Jin, R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 130, 5883-5885 (2008).
  22. Yu, Y., et al. Identification of a Highly Luminescent Au22(SG)18 Nanocluster. J. Am. Chem. Soc. 136, 1246-1249 (2014).
  23. Jiang, J., et al. Oxidation at the Core–Ligand Interface of Au Lipoic Acid Nanoclusters That Enhances the Near-IR Luminescence. J. Phys. Chem. 118, 20680-20687 (2014).
  24. Zhu, Y., Qian, H., Jin, R. An Atomic-Level Strategy for Unraveling Gold Nanocatalysis from the Perspective of Aun(SR)m Nanoclusters. Chem. Eur. J. 16, 11455-11462 (2010).
  25. Niesen, B., Rand, B. P. Thin Film Metal Nanocluster Light-Emitting Devices. Adv. Mater. 26, 1446-1449 (2014).
  26. Shang, L., Dong, S. J., Nienhaus, G. U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Toda. 6, 401-418 (2011).
  27. Wu, X., He, X., Wang, K., Xie, C., Zhou, B., Qing, Z. Ultrasmall Near-Infrared Gold Nanoclusters for Tumor Fluorescence Imaging in Vivo. Nanoscal. 2, 2244-2249 (2010).
  28. Archana, R., et al. Molecular-Receptor-Specific, Non-Toxic, Near-Infrared-Emitting Au Cluster-Protein Nanoconjugates for Targeted Cancer Imaging. Nanotechnolog. 21, 055103 (2010).
  29. Yue, Y., Liu, T. Y., Li, H. W., Liu, Z. Y., Wu, Y. Q. Microwave-Assisted Synthesis of BSA-Protected Small Gold Nanoclusters and Their Fluorescence-Enhanced Sensing of Silver(I) Ions. Nanoscal. 4, 2251-2254 (2012).
  30. Liu, Y., Ai, K., Cheng, X., Huo, L., Lu, L. Gold Nanocluster Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. 20, 951-1907 (2010).
  31. Liu, J., Yu, M., Zhou, C., Yang, S., Ning, X., Zheng, J. Passive Tumor Targeting of Renal-Clearable Luminescent Gold Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance. J. Am. Chem. Soc. 135, 4978-4981 (2013).
  32. Negishi, Y., et al. Controlled Loading of Small Aun Clusters (n = 10–39) onto BaLa4Ti4O15 Photocatalysts: Toward an Understanding of Size Effect of Co-Catalyst on Water Splitting Photocatalytic Activity. J. Phys. Chem. C. , (2015).
  33. Xie, J., Zheng, Y., Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 131, 888-889 (2009).
  34. Celej, M. S., Montich, G. G., Fidelio, G. D. Protein Stability Induced by Ligand Binding Correlates with Changes in Protein Flexibility. Protein Sci. 12, 1496-1506 (2003).
  35. Layton, C. J., Hellinga, H. W. Thermodynamic Analysis of Ligand-Induced Changes in Protein Thermal Unfolding Applied to High-Throughput Determination of Ligand Affinities with Extrinsic Fluorescent Dyes. Biochemistr. 49, 10831-10841 (2010).
  36. Yu, Y., New, S. Y., Xie, J., Su, X., Tan, Y. N. Protein-Based Fluorescent Metal Nanoclusters for Small Molecular Drug Screening. Chem. Commun. 50, 13805-13808 (2014).
  37. Shortridge, M. D. . Nuclear Magnetic Resonance Affinity Screening Methods for Functional Annotation of Proteins and Drug Discover. , (2010).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

104

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。