需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
* 这些作者具有相同的贡献
Vascular calcification is an important predictor of and contributor to human cardiovascular disease. This protocol describes methods for inducing calcification of cultured primary vascular smooth muscle cells and for quantifying calcification and macrophage burden in animal aortas using near-infrared fluorescence imaging.
Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.
心血管疾病是发病率和死亡率在世界上的首要原因,包括美国在那里它占每年超过78万例死亡。1冠状动脉钙化和主动脉钙化是动脉粥样硬化性疾病的标志,服务心血管事件的强预测因子。2- 4两种主要类型的血管钙化已经报道在成人:内膜钙化,与动脉粥样硬化有关,和内侧(也称为Mönckeberg)钙化,慢性肾脏疾病和糖尿病相关的脂质积累和巨噬细胞的设置发生5内膜钙化。浸润到血管壁。5,6-内侧壁钙化发生独立的内膜钙化,定位于弹性蛋白纤维或平滑肌细胞,并且不与脂质沉积或巨噬细胞浸润有关。5,7,8研究的分子机制血管钙化都依赖细胞系和动物模型系统。对于atherocalcific疾病的啮齿动物模型包括小鼠在任一载脂蛋白E(ApoE基因)9,10或低密度脂蛋白受体(LDLR)11喂食高脂肪食物不足,而型号为膜钙化包括与基质Gla的蛋白质的小鼠(MGP)缺乏症12,或任一由邻近总肾切除术(5/6肾切除模型)或通过暴露于高腺嘌呤饮食开发尿毒症大鼠13
在这里,MGP缺乏相关的内侧血管钙化模型的重点是。 MGP是抑制动脉钙化的细胞外蛋白。在MGP基因12的突变已在Keutel综合征,一种罕见的人类疾病除了brachytelephalangy特征在于漫射软骨钙化,听力丧失,外围肺动脉狭窄已确定。14-18虽然未经常观察,19多动脉钙化同心已经Keutel综合征24被描述。同时,未羧化,无生物活性MGP更高的循环水平预测心血管疾病的死亡率在人类基因MGP 20种常见多态性与冠状动脉钙化风险增加,21-23有关。与人类不同与Keutel综合征,MGP缺陷小鼠制定严重的血管型自发组成的广泛动脉钙化的开始两周年龄和出生后死亡6-8周因主动脉破裂。12
不像的ApoE - / -和LDLR - / -小鼠饲喂高脂肪的饮食,其发展与相关巨噬细胞诱导的炎症内膜血管钙化,MGP - / -小鼠发展内侧血管钙化在没有巨噬细胞浸润的11,25虽然这些研究结果表明为intim不同的潜在刺激人及内侧钙化,有在介导有助于血管钙化包括炎症介质例如肿瘤坏死因子α和IL-1和促成骨因子钙化。26多个信号通路已经鉴定的两种形式的信号机制重叠如缺口,Wnt信号,和骨形态发生蛋白(BMP)信令。27,28,这些信号传导途径增加了转录因子侏儒相关转录因子2(Runx2的)和osterix的,这反过来又增加骨相关蛋白表达的表达( 如 :,骨钙素,硬化,和碱性磷酸酶)在介导钙化脉管28-30我们和其他人已经表明,在ApoE基因中观察到的血管钙化- / -和LDLR - / -小鼠喂食高脂肪饮食和自发/ - -在MGP观察血管钙化小鼠都依赖于骨形态发生蛋白(BMP)SIgnaling,它是这一途径,重点是在这里。11,25,31 BMP是骨形成所需的强效的成骨因子和已知呈现在人类动脉粥样硬化的增加的表达。32-34 体外研究在调节牵连BMP信号成骨因子如Runx2的表达。35-37表达的BMP配体,BMP-2,加速血管钙化中的ApoE缺陷小鼠发展喂食高脂肪的饮食。38此外,信令抑制剂例如使用特定的BMP作为LDN-193189(LDN)39,40和/或ALK3-Fc的防止血管钙化的发展都LDLR - / -小鼠喂食高脂肪的饮食和MGP缺陷小鼠11,25。
血管平滑肌细胞(VSMC)在血管钙化的发展具有关键作用。30,41,42内侧血管钙化,在开发MGP缺陷小鼠是CHARAC由血管平滑肌细胞的转terized到成骨表型。 MGP的结果,包括心肌素和α-平滑肌肌动蛋白VSMC标志物的表达减少损失,具有成骨标记,如Runx2的骨桥蛋白和随之而来的上升。这些变化与血管钙化的发展相吻合。25,43,44
主动脉钙化和小鼠的炎症通常是评估利用组织化学技术,如早期钙化和成骨活性,冯·科萨和茜素红染色后期钙化碱性磷酸酶活性,并针对巨噬细胞蛋白标志物( 如免疫组化协议,CD68,F4 / 80,苹果-1,Mac的-2,Mac的-3)。9,45然而,这些标准成像技术需要主动脉组织成横截面的处理,这是耗时和不完善由于抽样偏差,并且被限制了它们的量化炎症和calcificat能力离子在整个主动脉。这个协议描述的方法来可视化和量化整个主动脉和中型动脉钙化和利用近红外荧光(NIR)分子成像体外的巨噬细胞积聚。还提供了用于收集和小鼠培养初级主动脉平滑肌细胞和诱导的方法为了鼠和体外人平滑肌钙化来确定血管钙化的分子机制。这些技术提供了研究者在体内和在研究atherocalcific疾病的体外方法用。
严格按照指南中的建议为美国国立卫生研究院的实验动物的护理和使用进行小鼠所有的研究。住房和涉及本研究中所描述的小鼠的所有程序是由马萨诸塞州总医院的机构动物护理和使用委员会(小组委员会研究动物保健)的批准。所有的程序都小心进行,以尽量减少痛苦。
1.试剂的制备
2.尾静脉注射
3.鼠标解剖
4.主动脉成像
5.隔离原代鼠主动脉血管平滑肌细胞
6.培养平滑肌诱导钙化细胞
7.评估VSMC钙化使用冯Kossa染色方法
注意:用于测量组织或培养细胞的细胞外基质钙化冯科萨方法是基于磷酸盐结合的钙离子与银离子的置换50在光和有机化合物的存在下,银离子被还原并且可视化为金属银。任何未反应的银通过用硫代硫酸钠处理,除去50为冯Kossa染色的方案如下:
要么
8.评估血管平滑肌细胞钙化与近红外荧光成像
注:在力所能及的类似鼠标主动脉内识别钙化,钙NIR容易结合培养细胞钙化沉积矿物。使用这种技术,荧光显微镜和板读者长波长的过滤器可以在图像和量化体外钙化,分 别。钙NIR的长波长发射允许更低波长发射荧光团的同时利用检测其它功能。钙NIR染色的协议如下:
/ - -在MGP主动脉钙化和野生型小鼠中使用钙NIR荧光成像测定。在从野生型小鼠的主动脉中没有检测到钙的NIR信号,指示不存在钙化的( 图2)。从MGP缺陷小鼠,这是与先进的血管钙化一致主动脉检测到强烈的钙NIR信号。从野生型和主动脉的组织切片MGP - / -小鼠用茜素红25( 图3A - B)中染色,证实在MGP缺陷小鼠?...
动脉钙化是人类的心血管疾病的重要危险因素,并可能直接向心血管事件的发病贡献。在动脉粥样硬化性疾病的薄纤维帽1,5,52内膜钙沉积已提出增加本地生物力学应力并有助于斑块破裂。通过增加动脉僵硬度,从而可诱发心肌肥厚,影响心脏功能53,54膜钙化影响临床疗效。55因此,了解背后血管钙化将提供重要的见解人类疾病和可能确定新的目标的分子机制治疗。
Massachusetts General Hospital has applied for patents related to small molecule inhibitors of BMP type I receptors and the application of ALK3-Fc to treat atherosclerosis and vascular calcification, and MD, PBY, KDB, and RM may be entitled to royalties.
This work was supported by the Sarnoff Cardiovascular Research Foundation (MFB and TET), the Howard Hughes Medical Institute (TM), the Ladue Memorial Fellowship Award from Harvard Medical School (DKR), the START-Program of the Faculty of Medicine at RWTH Aachen (MD), the German Research Foundation (DE 1685/1-1, MD), the National Eye Institute (R01EY022746, ESB), the Leducq Foundation (Multidisciplinary Program to Elucidate the Role of Bone Morphogenetic Protein Signaling in the Pathogenesis of Pulmonary and Systemic Vascular Diseases, PBY, KDB, and DBB), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR057374, PBY), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK082971, KDB and DBB), the American Heart Association Fellow-to-Faculty Award #11FTF7290032 (RM), and the National Heart, Lung, and Blood Institute (R01HL114805 and R01HL109506, EA; K08HL111210, RM).
Name | Company | Catalog Number | Comments |
15 ml conical tube | Falcon | 352096 | |
30 G needle | BD | 305106 | |
Alpha smooth muscle actin antibody | Sigma | SAB2500963 | |
Chamber slide | Nunc Lab-Tek | 154461 | |
Collagenase, Type 2 | Worthington | LS004176 | |
Dexamethasone | Sigma | D4902 | |
Dulbecco's Modified Eagle Medium | Life Technologies | 11965-084 | |
Dulbecco's Phosphate Buffered Saline, no calcium | Gibco | 14190-144 | |
Elastase | Sigma | E1250 | |
Fetal bovine serum | Gibco | 16000-044 | |
Forceps, fine point | Roboz | RS-4972 | |
Forceps, full curve serrated | Roboz | RS-5138 | |
Formalin (10%) | Electron Microscopy Sciences | 15740 | |
Hank's Balanced Salt Solution | Gibco | 14025-092 | |
Human coronary artery smooth muscle cells | PromoCell | C-12511 | |
Insulin syringe with needle | Terumo | SS30M2913 | |
L-ascorbic acid | Sigma | A-7506 | |
Micro-dissecting spring scissors (13 mm) | Roboz | RS-5676 | |
Micro-dissecting spring scissors (3 mm) | Roboz | RS-5610 | |
NIR, cathepsin (ProSense-750EX) | Perkin Elmer | NEV10001EX | |
NIR, osteogenic (OsteoSense-680EX) | Perkin Elmer | NEV10020EX | |
Normal Saline | Hospira | 0409-4888-10 | |
Nuclear fast red | Sigma-Aldrich | N3020 | |
Odyssey Imaging System | Li-Cor | Odyssey 3.0 | |
Penicillin/Streptomycin | Corning | 30-001-CI | |
Silver nitrate (5%) | Ricca Chemical Company | 6828-16 | |
Sodium phosphate dibasic heptahydrate | Sigma-Aldrich | S-9390 | |
Sodium thiosulfate | Sigma | S-1648 | |
ß-glycerophosphate disodium salt hydrate | Sigma | G9422 | |
Tissue culture flask, 25 cm2 | Falcon | 353108 | |
Tissue culture plate (35 mm x 10 mm) | Falcon | 353001 | |
Tissue culture plate, six-well | Falcon | 353046 | |
Trypsin | Corning | 25-053-CI | |
Tube rodent holder | Kent Scientific | RSTR551 | |
Vacuum-driven filtration system | Millipore | SCGP00525 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。