JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Vascular calcification is an important predictor of and contributor to human cardiovascular disease. This protocol describes methods for inducing calcification of cultured primary vascular smooth muscle cells and for quantifying calcification and macrophage burden in animal aortas using near-infrared fluorescence imaging.

摘要

Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.

引言

心血管疾病是发病率和死亡率在世界上的首要原因,包括美国在那里它占每年超过78万例死亡。1冠状动脉钙化和主动脉钙化是动脉粥样硬化性疾病的标志,服务心血管事件的强预测因子。2- 4两种主要类型的血管钙化已经报道在成人:内膜钙化,与动脉粥样硬化有关,和内侧(也称为Mönckeberg)钙化,慢性肾脏疾病和糖尿病相关的脂质积累和巨噬细胞的设置发生5内膜钙化。浸润到血管壁。5,6-内侧壁钙化发生独立的内膜钙化,定位于弹性蛋白纤维或平滑肌细胞,并且不与脂质沉积或巨噬细胞浸润有关。5,7,8研究的分子机制血管钙化都依赖细胞系和动物模型系统。对于atherocalcific疾病的啮齿动物模型包括小鼠在任一载脂蛋白E(ApoE基因)9,10或低密度脂蛋白受体(LDLR)11喂食高脂肪食物不足,而型号为膜钙化包括与基质Gla的蛋白质的小鼠(MGP)缺乏症12,或任一由邻近总肾切除术(5/6肾切除模型)或通过暴露于高腺嘌呤饮食开发尿毒症大鼠13

在这里,MGP缺乏相关的内侧血管钙化模型的重点是。 MGP是抑制动脉钙化的细胞外蛋白。在MGP基因12的突变已在Keutel综合征,一种罕见的人类疾病除了brachytelephalangy特征在于漫射软骨钙化,听力丧失,外围肺动脉狭窄已确定。14-18虽然未经常观察,19多动脉钙化同心已经Keutel综合征24被描述。同时,未羧化,无生物活性MGP更高的循环水平预测心血管疾病的死亡率在人类基因MGP 20种常见多态性与冠状动脉钙化风险增加,21-23有关。与人类不同与Keutel综合征,MGP缺陷小鼠制定严重的血管型自发组成的广泛动脉钙化的开始两周年龄和出生后死亡6-8周因主动脉破裂。12

不像的ApoE - / -和LDLR - / -小鼠饲喂高脂肪的饮食,其发展与相关巨噬细胞诱导的炎症内膜血管钙化,MGP - / -小鼠发展内侧血管钙化在没有巨噬细胞浸润的11,25虽然这些研究结果表明为intim不同的潜在刺激人及内侧钙化,有在介导有助于血管钙化包括炎症介质例如肿瘤坏死因子α和IL-1和促成骨因子钙化。26多个信号通路已经鉴定的两种形式的信号机制重叠如缺口,Wnt信号,和骨形态发生蛋白(BMP)信令。27,28,这些信号传导途径增加了转录因子侏儒相关转录因子2(Runx2的)和osterix的,这反过来又增加骨相关蛋白表达的表达( :,骨钙素,硬化,和碱性磷酸酶)在介导钙化脉管28-30我们和其他人已经表明,在ApoE基因中观察到的血管钙化- / -和LDLR - / -小鼠喂食高脂肪饮食和自发/ - -在MGP观察血管钙化小鼠都依赖于骨形态发生蛋白(BMP)SIgnaling,它是这一途径,重点是在这里。11,25,31 BMP是骨形成所需的强效的成骨因子和已知呈现在人类动脉粥样硬化的增加的表达。32-34 体外研究在调节牵连BMP信号成骨因子如Runx2的表达。35-37表达的BMP配体,BMP-2,加速血管钙化中的ApoE缺陷小鼠发展喂食高脂肪的饮食。38此外,信令抑制剂例如使用特定的BMP作为LDN-193189(LDN)39,40和/或ALK3-Fc的防止血管钙化的发展都LDLR - / -小鼠喂食高脂肪的饮食和MGP缺陷小鼠11,25。

血管平滑肌细胞(VSMC)在血管钙化的发展具有关键作用。30,41,42内侧血管钙化,在开发MGP缺陷小鼠是CHARAC由血管平滑肌细胞的转terized到成骨表型。 MGP的结果,包括心肌素和α-平滑肌肌动蛋白VSMC标志物的表达减少损失,具有成骨标记,如Runx2的骨桥蛋白和随之而来的上升。这些变化与血管钙化的发展相吻合。25,43,44

主动脉钙化和小鼠的炎症通常是评估利用组织化学技术,如早期钙化和成骨活性,冯·科萨和茜素红染色后期钙化碱性磷酸酶活性,并针对巨噬细胞蛋白标志物( 免疫组化协议,CD68,F4 / 80,苹果-1,Mac的-2,Mac的-3)。9,45然而,这些标准成像技术需要主动脉组织成横截面的处理,这是耗时和不完善由于抽样偏差,并且被限制了它们的量化炎症和calcificat能力离子在整个主动脉。这个协议描述的方法来可视化和量化整个主动脉和中型动脉钙化和利用近红外荧光(NIR)分子成像体外的巨噬细胞积聚还提供了用于收集和小鼠培养初级主动脉平滑肌细胞和诱导的方法为了鼠和体外人平滑肌钙化来确定血管钙化的分子机制。这些技术提供了研究者在体内研究atherocalcific疾病的体外方法用。

研究方案

严格按照指南中的建议为美国国立卫生研究院的实验动物的护理和使用进行小鼠所有的研究。住房和涉及本研究中所描述的小鼠的所有程序是由马萨诸塞州总医院的机构动物护理和使用委员会(小组委员会研究动物保健)的批准。所有的程序都小心进行,以尽量减少痛苦。

1.试剂的制备

  1. 所有主动脉的近红外荧光成像
    注:A二膦酸盐衍生的,近红外荧光成像探针可用于通过46,47结合羟磷灰石来标记在脉管成骨活性的组织蛋白酶活化荧光成像探针可作为巨噬细胞的蛋白酶解和弹性蛋白酶在标记。脉管9要允许同时使用荧光探针的,重要的是以使用在光谱上不同的探针。符号钙NIR将被用于指示特定钙化近红外荧光成像探针和组织蛋白酶NIR指示组织蛋白酶活动专有近红外荧光成像探针。
    1. 准备钙NIR和组织蛋白酶NIR的解决方案。根据制造商的协议,添加1.2毫升1×磷酸盐缓冲盐水(PBS)的含有钙NIR或组织蛋白酶NIR 24纳摩尔的小瓶中并轻轻摇动。
      注:根据制造商,一旦与PBS重组,在2-8℃下避光保存时,钙NIR和组织蛋白酶NIR解决方案仍然是14天稳定。
  2. 隔离和小鼠主动脉平滑肌细胞钙化
    1. 主动脉消化解决方案:
      1. 制备含有175单位/毫升的2型胶原酶和1.25 U / ml的蛋白酶新鲜溶液(〜3-5毫升,每主动脉收获)用Hank氏平衡盐溶液(HBSS)中。灭菌水溶液W第i个0.22微米真空驱动过滤系统,并保持在冰上的解决方案,直到使用。
    2. 细胞培养基:
      1. 补充500毫升Dulbecco氏改良Eagle培养基(DMEM)中的10%胎牛血清,100单位/ ml青霉素,和100μg/ ml链霉素。温热至使用前的媒体至37℃。
    3. 钙化媒体:
      1. 钙化媒体A(NaPhos;在小鼠细胞系使用):
        1. 补充100-500毫升的DMEM(体积根据需要),用10%胎牛血清,2 mM磷酸钠,100单位/ ml青霉素,和100μg/ ml链霉素。温热至使用前的媒体至37℃。

          要么
      2. 钙化介质B(βGP/ ASC / DEX;在小鼠或人细胞系中使用):
        1. 补充100-500的DMEM毫升(体积如需要),用10%胎牛血清,10mM的β-甘油二钠,50微克/毫升L-抗坏血酸,10纳米塞米松,100单位/ ml青霉素,和100μg/ ml链霉素。温热至使用前的媒体至37℃。

2.尾静脉注射

  1. 尾注射前,温热温和加热灯下小鼠5分钟。
  2. 抑制在管啮齿类支架鼠标。用消毒酒精棉签尾巴。
  3. 为利用尾静脉注射为30G针头。尾静脉位于侧面。
    1. 应用在注射器向前压力的温和量当针被推进到尾。静脉被访问一次注射的电阻不再存在。
    2. 注入100μl的钙NIR和/或100微升蛋白酶NIR的体积以稳定的速度。在注射结束时,一个5秒的暂停后,撤回的针头。
  4. 收获了主动脉(见第3节)注射后3-24小时。

3.鼠标解剖

  1. 安乐死鼠标采用了200毫克/公斤腹腔注射巴比妥。
  2. 躺在的夹层板动物仰卧和每个爪子录音向董事会稳定。使用解剖显微镜和小剪刀,使从下腹部延伸到上部胸部一个中线切口。
  3. 剥开用钳子皮肤和去除腹膜,露出腹部器官。取出胃肠器官,注意不要横切主动脉。
  4. 使前膜片的横向切口,并继续穿过腹部切口。用解剖剪,通过肋的侧面切削去除软组织附着在胸骨的上部释放胸腔。取出肋骨,揭示了肺。
  5. 留在原地的心脏开始(以帮助识别和解剖近端主动脉),并小心地取出肺。取出胸腺,气管,食管和谨慎,ensuri纳克的主动脉保持不变。
  6. 使用直细镊子和微解剖剪刀,去除软组织髂分叉主动脉周围的主动脉弓,取出围主动脉脂肪( 1A)时,请特别注意。除去周围主动脉弓( 头臂,颈和锁骨下动脉, 图1B)的大树枝剩余的脂肪和软组织。
    注意:从主动脉除去脂肪,因为在进行荧光摄像时脂肪可增加背景信号是很重要的。
  7. 从胸腔中取出心脏,小心地从近端主动脉分离,再将其丢弃。在样髂分叉远端主动脉。使用胰岛素针,注射生理盐水进入主动脉从主动脉弓洗出剩余的血细胞。拆下主动脉主动脉弓船沿,完全删除它从主体。
  8. 放置在冰上生理盐水溶液中的主动脉,直到准备用于成像。

4.主动脉成像

  1. 图片主动脉体外立即收获近红外荧光反射成像后25
    1. 在适当的多信道波长设置荧光成像器,从钙的NIR和组织蛋白酶NIR-注射的小鼠的主动脉量化荧光信号强度,如前面所述。25根据生产商,钙NIR可以通过〜650-678纳米的光与被激发在680-700〜nm范围内的最大排放量。组织蛋白酶NIR可以通过〜745-750纳米的光与〜770纳米的最大发射激发。

5.隔离原代鼠主动脉血管平滑肌细胞

  1. 如上所述执行步骤3.1-3.7。
  2. 将主动脉冷HBSS直至解剖完成。小心切掉任何REM癌宁主动脉周围脂肪和软组织,只留下主动脉。
  3. 下的无菌组织培养罩,转移主动脉到主动脉消化解35毫米×10毫米组织培养皿中。地方在37℃温和间歇摇动30分钟的孵化器。消化后,将主动脉表现出拉伸或磨损的外观。
  4. 用解剖显微镜和无菌镊子,取出主动脉的外外膜层同时保持内侧层完好。除去外膜的一种技术是在一端剥离主动脉的外层和底层中间层像短袜可剥离背面除去其删除。
  5. 一旦外膜层已被去除,并将其余主动脉与细胞培养基并储存一个新的组织培养皿在37℃,5%CO 2的2-4小时。
  6. 在无菌罩,并用无菌3毫米显微解剖剪,主动脉到1-2毫米宽戒指。
  7. 放置在主动脉消化解一个新组织培养皿这些环,并在37℃下轻轻摇动间歇120分钟孵育。吸取该温育重悬细胞中的溶液上下数次。
  8. 5毫升温暖细胞培养基加入到消化溶液,并转移到15毫升锥形管中。
  9. 离心管,在200×g下5分钟。
  10. 吸媒体和悬浮细胞在细胞培养基( 例如 ,5ml)中的所需量。
  11. 从在的25cm 2细胞培养烧瓶中的每个主动脉板分离的细胞的全部的量,并在37℃用5%CO 2孵育。传播用标准技术的细胞,如前面所述。25,48在孵育的最初7-10天,改变介质每72-96小时。随着细胞汇合接近,补充媒体更频繁(每隔48小时)。
    注意:这可能需要几个星期长出足够QUA细胞ntity。
  12. 一旦汇合,用胰蛋白酶代细胞被加热到37℃。
    1. 添加0.5-1.0 ml胰蛋白酶的每个培养瓶中,孵育3-5分钟;根据需要从表面分离细胞轻轻敲打烧瓶的侧面每30-60秒。
    2. 一旦细胞从烧瓶底部分离,在胰蛋白酶加入10 ml的细胞培养基的细胞中。离心细胞,在200×g离心5分钟。从细胞沉淀中吸出介质和胰蛋白酶。悬浮细胞在新鲜细胞培养基( 例如 ,5-10毫升)的所需量,并转移到新的烧瓶(带转移至腔室滑动一些细胞)。
  13. 在细胞的第一通道,确认与标准的免疫细胞化学技术,平滑肌细胞谱系,如前所述,49使用针对α平滑肌肌动蛋白的抗体。

6.培养平滑肌诱导钙化细胞

  1. 从5.12在6孔格式获得的板的细胞。注意:用1×10 5细胞/孔在2.0 ml的细胞培养基的总体积开始每建议很好。
  2. 让细胞在钙化媒体A或B生长至少7天的6孔板格式。孵育细胞在37℃,5%的CO 2。
  3. 改变细胞介质每48小时。

7.评估VSMC钙化使用冯Kossa染色方法

注意:用于测量组织或培养细胞的细胞外基质钙化冯科萨方法是基于磷酸盐结合的钙离子与银离子的置换50在光和有机化合物的存在下,银离子被还原并且可视化为金属银。任何未反应的银通过用硫代硫酸钠处理,除去50为冯Kossa染色的方案如下:

  1. 从细胞吸铜介质lture板。
  2. 通过在室温下将其放置在1毫升10%福尔马林的20分钟固定细胞。
  3. 除去福尔马林,并用蒸馏水洗涤固定细胞5分钟。
  4. 孵育细胞在1ml的5%硝酸银溶液中的60-100W¯¯灯泡1-2小时下。
  5. 吸出硝酸银溶液,并用蒸馏水冲洗5分钟。
  6. 通过将细胞在1毫升5%硫代硫酸钠的(重量/体积)的蒸馏水溶液中5分钟,除去未反应的银。
  7. 用蒸馏水冲洗细胞5分钟。重复洗涤3倍。冯·科萨染色准备好与标准倒置光学显微成像。
  8. 可选步骤:用核固红1毫升染液5分钟。用洗涤三次,用蒸馏水(每次5分钟)按照此。

要么

8.评估血管平滑肌细胞钙化与近红外荧光成像

注:在力所能及的类似鼠标主动脉内识别钙化,钙NIR容易结合培养细胞钙化沉积矿物。使用这种技术,荧光显微镜和板读者长波长的过滤器可以在图像和量化体外钙化,分 ​​别。钙NIR的长波长发射允许更低波长发射荧光团的同时利用检测其它功能。钙NIR染色的协议如下:

  1. 正如第1.1.1节所述,加1.2毫升1X PBS以含钙NIR的24纳摩尔小瓶。
  2. 在适当的钙化或控制媒体100的稀释:钙NIR股票1。
  3. 从培养板吸细胞介质,并与含钙NIR-培养基更换。
  4. 孵育钙NIR介质培养板在37℃下过夜。
  5. 吸从孔中的介质,并用PBS洗一次孔中。
    注意:在这一点上,原始培养介质可被加入到孔中,并且细胞可以实时成像。否则,请继续下面的步骤。
  6. 通过在室温下将其放置在1毫升10%福尔马林的20分钟固定细胞。
  7. 除去福尔马林,并用蒸馏水洗涤固定细胞5分钟。重复洗涤3倍。
  8. 可选步骤:执行免疫荧光染色或其他counterstains感兴趣蛋白质8,9
  9. 图片或使用相应的荧光激发波长( 例如 ,钙NIR可以通过650-678纳米的光激发)和发射器(680-700〜nm)的检测钙NIR污点。

结果

/ - -在MGP主动脉钙化和野生型小鼠中使用钙NIR荧光成像测定。在从野生型小鼠的主动脉中没有检测到钙的NIR信号,指示不存在钙化的( 图2)。从MGP缺陷小鼠,这是与先进的血管钙化一致主动脉检测到强烈的钙NIR信号。从野生型和主动脉的组织切片MGP - / -小鼠用茜素红25( 图3A - B)中染色,证实在MGP缺陷小鼠?...

讨论

动脉钙化是人类的心血管疾病的重要危险因素,并可能直接向心血管事件的发病贡献。在动脉粥样硬化性疾病的薄纤维帽1,5,52内膜钙沉积已提出增加本地生物力学应力并有助于斑块破裂。通过增加动脉僵硬度,从而可诱发心肌肥厚,影响心脏功能53,54膜钙化影响临床疗效。55因此,了解背后血管钙化将提供重要的见解人类疾病和可能确定新的目标的分子机制治疗。

披露声明

Massachusetts General Hospital has applied for patents related to small molecule inhibitors of BMP type I receptors and the application of ALK3-Fc to treat atherosclerosis and vascular calcification, and MD, PBY, KDB, and RM may be entitled to royalties.

致谢

This work was supported by the Sarnoff Cardiovascular Research Foundation (MFB and TET), the Howard Hughes Medical Institute (TM), the Ladue Memorial Fellowship Award from Harvard Medical School (DKR), the START-Program of the Faculty of Medicine at RWTH Aachen (MD), the German Research Foundation (DE 1685/1-1, MD), the National Eye Institute (R01EY022746, ESB), the Leducq Foundation (Multidisciplinary Program to Elucidate the Role of Bone Morphogenetic Protein Signaling in the Pathogenesis of Pulmonary and Systemic Vascular Diseases, PBY, KDB, and DBB), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR057374, PBY), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK082971, KDB and DBB), the American Heart Association Fellow-to-Faculty Award #11FTF7290032 (RM), and the National Heart, Lung, and Blood Institute (R01HL114805 and R01HL109506, EA; K08HL111210, RM).

材料

NameCompanyCatalog NumberComments
15 ml conical tubeFalcon352096
30 G needleBD305106
Alpha smooth muscle actin antibodySigmaSAB2500963
Chamber slideNunc Lab-Tek154461
Collagenase, Type 2 WorthingtonLS004176
DexamethasoneSigmaD4902
Dulbecco's Modified Eagle MediumLife Technologies11965-084
Dulbecco's Phosphate Buffered Saline, no calciumGibco14190-144
ElastaseSigmaE1250
Fetal bovine serumGibco16000-044
Forceps, fine pointRobozRS-4972
Forceps, full curve serratedRobozRS-5138
Formalin (10%)Electron Microscopy Sciences15740
Hank's Balanced Salt SolutionGibco14025-092
Human coronary artery smooth muscle cellsPromoCellC-12511
Insulin syringe with needleTerumoSS30M2913
L-ascorbic acidSigmaA-7506
Micro-dissecting spring scissors (13 mm)RobozRS-5676
Micro-dissecting spring scissors (3 mm)RobozRS-5610
NIR, cathepsin (ProSense-750EX)Perkin ElmerNEV10001EX
NIR, osteogenic (OsteoSense-680EX)Perkin ElmerNEV10020EX
Normal SalineHospira0409-4888-10
Nuclear fast redSigma-AldrichN3020
Odyssey Imaging SystemLi-CorOdyssey 3.0
Penicillin/StreptomycinCorning30-001-CI
Silver nitrate (5%)Ricca Chemical Company6828-16
Sodium phosphate dibasic heptahydrateSigma-AldrichS-9390
Sodium thiosulfateSigmaS-1648
ß-glycerophosphate disodium salt hydrateSigmaG9422
Tissue culture flask, 25 cm2Falcon353108
Tissue culture plate (35 mm x 10 mm)Falcon353001
Tissue culture plate, six-wellFalcon353046
TrypsinCorning25-053-CI
Tube rodent holderKent ScientificRSTR551
Vacuum-driven filtration systemMilliporeSCGP00525

参考文献

  1. Go, A. S., et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 129 (3), e28-e292 (2014).
  2. Wilson, P. W., et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation. 103 (11), 1529-1534 (2001).
  3. Budoff, M. J., et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association on Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 114 (16), 1761-1791 (2006).
  4. Greenland, P., LaBree, L., Azen, S. P., Doherty, T. M., Detrano, R. C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. Jama. 291 (2), 210-215 (2004).
  5. Otsuka, F., Sakakura, K., Yahagi, K., Joner, M., Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed?. Arterioscler Thromb Vasc Biol. 34 (4), 724-736 (2014).
  6. Virmani, R., Burke, A. P., Farb, A., Kolodgie, F. D. Pathology of the vulnerable plaque. J Am Coll Cardiol. 47 (8 Suppl), C13-C18 (2006).
  7. Amann, K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 3 (6), 1599-1605 (2008).
  8. Aikawa, E., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 119 (13), 1785-1794 (2009).
  9. Aikawa, E., et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 116 (24), 2841-2850 (2007).
  10. Qiao, J. H., et al. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 14 (9), 1480-1497 (1994).
  11. Derwall, M., et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 32 (3), 613-622 (2012).
  12. Luo, G., et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 386 (6620), 78-81 (1997).
  13. Shobeiri, N., Adams, M. A., Holden, R. M. Vascular calcification in animal models of CKD: A review. Am J Nephrol. 31 (6), 471-481 (2010).
  14. Keutel, J., Jorgensen, G., Gabriel, P. [A new autosomal-recessive hereditary syndrome. Multiple peripheral pulmonary stenosis, brachytelephalangia, inner-ear deafness, ossification or calcification of cartilages]. Dtsch Med Wochenschr. 96 (43), 1676-1681 (1971).
  15. Munroe, P. B., et al. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet. 21 (1), 142-144 (1999).
  16. Cormode, E. J., Dawson, M., Lowry, R. B. Keutel syndrome: clinical report and literature review. Am J Med Genet. 24 (2), 289-294 (1986).
  17. Fryns, J. P., van Fleteren, A., Mattelaer, P., van den Berghe, H. Calcification of cartilages, brachytelephalangy and peripheral pulmonary stenosis. Confirmation of the Keutel syndrome. Eur J Pediatr. 142 (3), 201-203 (1984).
  18. Ozdemir, N., et al. Tracheobronchial calcification associated with Keutel syndrome. Turk J Pediatr. 48 (4), 357-361 (2006).
  19. Cranenburg, E. C., et al. Circulating matrix gamma-carboxyglutamate protein (MGP) species are refractory to vitamin K treatment in a new case of Keutel syndrome. J Thromb Haemost. 9 (6), 1225-1235 (2011).
  20. Meier, M., Weng, L. P., Alexandrakis, E., Ruschoff, J., Goeckenjan, G. Tracheobronchial stenosis in Keutel syndrome. Eur Respir J. 17 (3), 566-569 (2001).
  21. Wang, Y., et al. Common genetic variants of MGP are associated with calcification on the arterial wall but not with calcification present in the atherosclerotic plaques. Circ Cardiovasc Genet. 6 (3), 271-278 (2013).
  22. Cassidy-Bushrow, A. E., et al. Matrix gla protein gene polymorphism is associated with increased coronary artery calcification progression. Arterioscler Thromb Vasc Biol. 33 (3), 645-651 (2013).
  23. Crosier, M. D., et al. Matrix Gla protein polymorphisms are associated with coronary artery calcification in men. J Nutr Sci Vitaminol (Tokyo). 55 (1), 59-65 (2009).
  24. Liu, Y. P., et al. Inactive matrix Gla protein is causally related to adverse health outcomes: a Mendelian randomization study in a Flemish population. Hypertension. 65 (2), 463-470 (2015).
  25. Malhotra, R., et al. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency. PLoS One. 10 (1), e0117098 (2015).
  26. Demer, L. L., Tintut, Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 34 (4), 715-723 (2014).
  27. Rusanescu, G., Weissleder, R., Aikawa, E. Notch signaling in cardiovascular disease and calcification. Curr Cardiol Rev. 4 (3), 148-156 (2008).
  28. Leopold, J. A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 25 (4), 267-274 (2015).
  29. Bostrom, K. I., Rajamannan, N. M., Towler, D. A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 109 (5), 564-577 (2011).
  30. Hruska, K. A., Mathew, S., Saab, G. Bone morphogenetic proteins in vascular calcification. Circ Res. 97 (2), 105-114 (2005).
  31. Yao, Y., et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 107 (4), 485-494 (2010).
  32. Bostrom, K., et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 91 (4), 1800-1809 (1993).
  33. Bragdon, B., et al. Bone morphogenetic proteins: a critical review. Cell Signal. 23 (4), 609-620 (2011).
  34. Cai, J., Pardali, E., Sanchez-Duffhues, G., ten Dijke, P. BMP signaling in vascular diseases. FEBS Lett. 586 (14), 1993-2002 (2012).
  35. Lee, K. S., et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 20 (23), 8783-8792 (2000).
  36. Matsubara, T., et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 283 (43), 29119-29125 (2008).
  37. Li, X., Yang, H. Y., Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 199 (2), 271-277 (2008).
  38. Nakagawa, Y., et al. Paracrine osteogenic signals via bone morphogenetic protein-2 accelerate the atherosclerotic intimal calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 30 (10), 1908-1915 (2010).
  39. Cuny, G. D., et al. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett. 18 (15), 4388-4392 (2008).
  40. Yu, P. B., et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 14 (12), 1363-1369 (2008).
  41. Schurgers, L. J., Uitto, J., Reutelingsperger, C. P. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med. 19 (4), 217-226 (2013).
  42. Speer, M. Y., et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 104 (6), 733-741 (2009).
  43. Speer, M. Y., Li, X., Hiremath, P. G., Giachelli, C. M. Runx2/Cbfa1 but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 110 (4), 935-947 (2010).
  44. Steitz, S. A., et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 89 (12), 1147-1154 (2001).
  45. Inoue, T., Plieth, D., Venkov, C. D., Xu, C., Neilson, E. G. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int. 67 (6), 2488-2493 (2005).
  46. Zaheer, A., et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol. 19 (12), 1148-1154 (2001).
  47. Aikawa, E., et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 115 (3), 377-386 (2007).
  48. Lee, K. J., Czech, L., Waypa, G. B., Farrow, K. N. Isolation of pulmonary artery smooth muscle cells from neonatal mice. J Vis Exp. (80), e50889 (2013).
  49. Tang, Y., Herr, G., Johnson, W., Resnik, E., Aho, J. Induction and analysis of epithelial to mesenchymal transition. J Vis Exp. (78), (2013).
  50. Puchtler, H., Meloan, S. N. Demonstration of phosphates in calcium deposits: a modification of von Kossa's reaction. Histochemistry. 56 (3-4), 177-185 (1978).
  51. Krahn, K. N., Bouten, C. V., van Tuijl, S., van Zandvoort, M. A., Merkx, M. Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem. 350 (2), 177-185 (2006).
  52. Johnson, R. C., Leopold, J. A., Loscalzo, J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 99 (10), 1044-1059 (2006).
  53. Vengrenyuk, Y., et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 103 (40), 14678-14683 (2006).
  54. Maldonado, N., et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 303 (5), H619-H628 (2012).
  55. Toussaint, N. D., Kerr, P. G. Vascular calcification and arterial stiffness in chronic kidney disease: implications and management. Nephrology (Carlton). 12 (5), 500-509 (2007).
  56. Vines, D. C., Green, D. E., Kudo, G., Keller, H. Evaluation of mouse tail-vein injections both qualitatively and quantitatively on small-animal PET tail scans. J Nucl Med Technol. 39 (4), 264-270 (2011).
  57. Smith, J. G., et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. Jama. 312 (17), 1764-1771 (2014).
  58. Thanassoulis, G., et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 368 (6), 503-512 (2013).
  59. Otto, C. M., Kuusisto, J., Reichenbach, D. D., Gown, A. M., O'Brien, K. D. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 90 (2), 844-853 (1994).
  60. New, S. E., Aikawa, E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 108 (11), 1381-1391 (2011).
  61. Jaffer, F. A., Libby, P., Weissleder, R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 29 (7), 1017-1024 (2009).
  62. Stern, P. H. Antiresorptive agents and osteoclast apoptosis. J Cell Biochem. 101 (5), 1087-1096 (2007).
  63. Ray, J. L., Leach, R., Herbert, J. M., Benson, M. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 23 (4), 185-188 (2001).
  64. Chamley-Campbell, J., Campbell, G. R., Ross, R. The smooth muscle cell in culture. Physiol Rev. 59 (1), 1-61 (1979).
  65. Trion, A., Schutte-Bart, C., Bax, W. H., Jukema, J. W., van der Laarse, A. Modulation of calcification of vascular smooth muscle cells in culture by calcium antagonists, statins, and their combination. Mol Cell Biochem. 308 (1-2), 25-33 (2008).
  66. Mori, K., Shioi, A., Jono, S., Nishizawa, Y., Morii, H. Dexamethasone enhances In vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 19 (9), 2112-2118 (1999).
  67. Thyberg, J. Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol. 169, 183-265 (1996).
  68. Dinardo, C. L., et al. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging. Biorheology. 49 (5-6), 365-373 (2012).
  69. Metz, R. P., Patterson, J. L., Wilson, E. Vascular smooth muscle cells: isolation, culture, and characterization. Methods Mol Biol. 843, 169-176 (2012).
  70. Proudfoot, D., Shanahan, C. Human vascular smooth muscle cell culture. Methods Mol Biol. 806, 251-263 (2012).
  71. Hruska, K. A. Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res. 104 (6), 710-711 (2009).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

111

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。