JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

此协议的目的是通过横向主动脉缩窄创建心脏疾病的小鼠模型评估无创心脏结构和功能改变,采用B和M型超声心动图和彩色/脉冲多普勒成像。

摘要

Transverse aortic constriction (TAC) in mice has been used as a valuable model to study mechanisms of cardiac hypertrophy and heart failure1. A reliable noninvasive method is essential to assess real-time cardiac morphological and functional changes in animal models of heart disease. Transthoracic echocardiography represents an important tool for noninvasive assessment of cardiac structure and function2. Here we used a high-resolution ultrasound imaging system to monitor myocardial remodeling and heart failure progression over time in a mouse model of TAC. B-mode, M-mode, and Doppler imaging were used to precisely assess cardiac hypertrophy, ventricular dilatation, and functional deterioration in mice following TAC. Color and pulse wave (PW) Doppler imaging was used to noninvasively measure pressure gradient across the aortic constriction created by TAC and to assess transmitral blood flow in mice. Thus transthoracic echocardiographic imaging provides comprehensive noninvasive measurements of cardiac dimensions and function in mouse models of heart disease.

引言

Mouse models of heart disease, such as TAC and myocardial infarction (MI), have been proven to be valuable to study disease mechanisms as well as to develop novel therapeutic strategies3. TAC initially induces compensatory hypertrophy, but prolonged pressure overload leads to cardiac dilatation and heart failure4. The tightness of the aortic constriction directly determines the degree of cardiac hypertrophy and its transition to heart failure. Noninvasive and reliable measurement of pressure gradient across the aortic constriction is essential for the success of these studies. Doppler imaging has been used to assess pressure gradient produced by TAC5, which is a noninvasive alternative for catheter-based pressure measurement.

Echocardiography has been widely used to noninvasively measure cardiac morphology as well as systolic and diastolic function in mice6-8. Two-dimensional B-mode imaging is used to detect abnormal movements or structural changes of the heart. One-dimensional M-mode imaging is used for quantification of cardiac dimensions and contractility. Color and PW Doppler imaging has recently been used on rodent ultrasound, which has broad applications for echocardiography, including measurement of flow directionality and velocity, as well as systolic and diastolic performance9.

Longitudinal real-time monitoring of cardiac function using echocardiography in B-mode, M-mode, color and PW Doppler mode provides comprehensive assessment of cardiac structure and function in mice under physiological and pathological conditions. Here we provide a detailed description of the use of echocardiographic imaging to monitor dynamic cardiac morphological and functional changes in mice following TAC or sham surgery.

Access restricted. Please log in or start a trial to view this content.

研究方案

该协议遵循华盛顿大学的机构动物护理和使用委员会的指导方针。

1.手术过程和准备成像

  1. 受试者C57BL / 6小鼠,以TAC或假手术,如前所述10。
  2. TAC或假手术后一周,麻醉小鼠中,用2%异氟烷以1L /分钟 O 2混合感应腔室。通过确认适当反应迟钝麻醉脚趾或尾部捏。使用于眼部兽医药膏,以防止干燥时的麻醉下。通过应用脱毛膏取出胸毛。消毒用70%乙醇的小鼠皮肤。
  3. 固定鼠标向动物处理平台在仰卧位。维持麻醉的一个稳定的水平,可使用鼻锥提供0.5 - 1%异氟烷以1L /分钟 O 2混合。
  4. 应用电极凝胶的小鼠的爪和它们胶带将电极焊盘。
  5. 插入直肠探头监测体温。通过加热垫或灯保持体温在37℃。
  6. 应用预热超声凝胶层到鼠标胸部,主要区域覆盖心脏。注意:删除超声凝胶和成像过程干燥后用无菌纱布鼠标。

2.在主动脉弓查看,使用B模式和多普勒成像评价横向主动脉缩窄

  1. 使用B模式设置获得以显现主动脉,主要动脉分支,并且缩颈部位主动脉弓图。
    1. 倾斜平台上来尽可能的左侧旋转鼠标放到左侧卧位。握住支架上的超声换能器的垂直位置,并将其放置在沿着正确的胸骨旁线胸前,朝向鼠标的下巴指向缺口。注意:不要压缩鼠标胸廓降低TRANSD时ucer;需要的压力最小量。
    2. 倾斜传感器上在肩胛骨的水平并顺时针旋转略微直到主动脉弓进入图。观察横向主动脉缩窄位点,其位于无名动脉(IA)和左颈总动脉(LCCA)( 图1)的分支之间。
      注:假手术鼠标未检测到收缩。
  2. 点击工作站上的"彩色多普勒"按钮切换到彩色多普勒模式,以监控整个收缩部位的血液流动的方向和速度。获取并点击"电影商店"按钮保存图像。
  3. 点击"脉冲多普勒"按钮,切换到脉冲波的多普勒模式,地方样本量(虚线光标框)立即远端狭窄网站搜索最高速度狭窄喷射,然后单击"PW多普勒"按钮获得主动脉佛罗里达州的波形流动并测量峰值速度( 图2)。
  4. 计算使用改性伯努利方程跨网站收缩压力梯度:压力梯度= 4×2V 以下 2。仅包括与压力梯度范围从40到80毫米汞柱用于进一步分析的小鼠。

3.在胸骨旁长轴切面,使用B模式和M模式成像来评估心脏尺寸和收缩

  1. 用鼠标躺在平台上的仰卧位,保持与缺口指向鼠标的头部在垂直的方式换能器。降低对平行于左胸骨旁线胸廓的换能器和逆时针旋转30°。
  2. 使用B型成像,以获得心脏的一个完整的长轴"矢"的看法。调整换能器的角度和聚焦深度的可视化左心室,脑室间隔墙,以及右心室壁的轻微的部分。小号AVE图像购买心脏壁的厚度和腔室尺寸的测量。用"心套餐",选择参数,如IVS或LVAW,LVID和LVPW,然后点击图片绘制相应行的每个参数,以获得测量结果。
  3. 观察心脏室壁运动模式,并检查可能存在的运动异常,包括运动不能,运动功能减退,以及异步。
    注意事项:运动不能和运动功能减退表示心脏壁的运动完全和部分损失分别。异步表示不规则,不协调的心脏室壁运动。
  4. 切换到M模式,地点M型光标垂直于左心室壁在乳头肌水平,并获得用于心脏尺寸和缩短分数( 图3)的后面测量图像。

4.在胸骨旁短轴视图中,使用B型和M型成像,以评估心脏形态和功能

  1. 神父OM胸骨旁长轴切面,通过换能器顺时针旋转90°旋转获得胸骨旁短轴观。调整换能器,得到的横截面"横向"在B模式心脏的图,这两个乳头肌清楚可见,位于右侧(在2和4点的位置)。
  2. 切换到M型,并将M型轴在左心室的级别中旬。获取和存储图像供以后心脏壁厚,腔尺寸和短轴缩短率( 图4)测量。用"心套餐",在SAX(短轴),包括IVS或LVAW,LVID和LVPW,并在图像上单击选择参数绘制相应的线对每个参数,以获得测量结果。
    注意:此处获得的测量应在胸骨旁长轴视图( 图5)获得的那些密切相关。

5.在心尖四腔心切面,用多普勒显像评估收缩与舒张功能

  1. 获得心尖四腔视图与在屏幕的底部的心房形象化左,右心室。在B模式中,从短轴视图,向下倾斜平台的左上角角鼠标的头部和定向换能器朝鼠标的右肩。这实质上是实现了心脏抬头朝顶点的"冠"的看法。
  2. 可视化B模式二尖瓣,并切换到彩色多普勒模式,放置在二尖瓣的末端的样品体积(虚线光标框)。
  3. 切换到脉冲多普勒模式,以评估跨二尖瓣流动模式。对齐平行于二尖瓣血液流动的方向的多普勒探头光标。使用探针角度小于20°,以确定峰值速度( 图6)。
  4. 保存图像供以后的测量。用"心包",然后选择"MV流"点击各参数,并绘制相应行获得的测量可用测量包括:E峰速度(年初主动心室舒张充盈),峰值速度(与心房收缩晚期充盈),二尖瓣等容舒张和收缩时间(IVRT和IVCT分别),和喷射时间(ET)。
  5. 通过计算MPI =(IVCT + IVRT)/ ET心肌的性能指数(MPI)。

动物6.后处理程序

  1. 得到的镇痛和/或无菌盐水腹膜内手术的动物需要时。
  2. 让动物在俯卧位加热垫恢复。无人看管,直到它已经恢复了足够的意识,以保持胸骨斜卧不要让动物。不返回已经历的过程,以公司的其他动物,直到完全恢复的动物。

Access restricted. Please log in or start a trial to view this content.

结果

图1示出了进行假( 图1A)的小鼠心脏或TAC手术( 图1B)的主动脉弓视图的B模式图像。主动脉弓,无名动脉,左颈总动脉和左锁骨下动脉被示出。需要注意的是主动脉缩窄是TAC清晰可见,但不假心脏。从主动脉视图彩色多普勒图像示于图2A。穿过缩颈部位的主动脉流的波形是由脉冲多普勒成像( 图2B)捕获。?...

Access restricted. Please log in or start a trial to view this content.

讨论

超声心动图已被广泛用于评估心脏疾病2,6的啮齿动物模型的心脏功能。相比于侵入或终端的方法,如压力容积环测量11体外工作心脏12,超声心动图提供了强大的,非侵入性工具来评估在动物活体心脏正在进行结构和功能的改变。获得可靠的数据,通过仔细调节加热装置和麻醉水平保持体温和心脏速率生理范围13内是很重要的。所有图像应该始终根据标准?...

Access restricted. Please log in or start a trial to view this content.

披露声明

This work was supported in part by NIH/NHLBI grants R00HL0908076 and R01HL116507 (to Q.L.).

致谢

The authors have nothing to disclose.

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
Anesthesia equipmentHarvard Apparatus, 84 October Hill Road
Holliston, MA
723015
Vevo 2100 Imaging SystemVisualSonics Inc., 3080 Yonge Street Suite 6100, Box 66, Toronto, Ontario, CanadaVevo 2100
Aquasonic ultrasound gelParker Laboratories, 286 Eldridge Rd, Fairfield, NJ 03-50
IsofluranePiramal Healthcare, Inc, 3950 Schelden Circle
Bethlehem, PA 
NDC 66794-017-25
F/air anesthesia gas filter unitA.M. Bickford, Inc, 12318 Big Tree Rd, Wales Center, NY 80120

参考文献

  1. Rockman, H. A., et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA. 88 (18), 8277-8281 (1991).
  2. Tanaka, N., et al. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation. 94 (5), 1109-1117 (1996).
  3. Patten, R. D., Hall-Porter, M. R. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2 (2), 138-144 (2009).
  4. Heineke, J., Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 7 (8), 589-600 (2006).
  5. Oka, T., et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res. 98 (6), 837-845 (2006).
  6. Gardin, J. M., Siri, F. M., Kitsis, R. N., Edwards, J. G., Leinwand, L. A. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res. 76 (5), 907-914 (1995).
  7. Respress, J. L., Wehrens, X. H. Transthoracic echocardiography in mice. J Vis Exp. (39), e1738(2010).
  8. Pistner, A., Belmonte, S., Coulthard, T., Blaxall, B. Murine echocardiography and ultrasound imaging. J Vis Exp. (42), e2100(2010).
  9. Patten, R. D., Aronovitz, M. J., Bridgman, P., Pandian, N. G. Use of pulse wave and color flow Doppler echocardiography in mouse models of human disease. J Am Soc Echocardiogr. 15 (7), 708-714 (2002).
  10. deAlmeida, A. C., van Oort, R. J., Wehrens, X. H. Transverse aortic constriction in mice. J Vis Exp. (38), e1729(2010).
  11. Pacher, P., Nagayama, T., Mukhopadhyay, P., Bátkai, S., Kass, D. A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 3 (9), 1422-1434 (2008).
  12. Larsen, T. S., et al. The isolated working mouse heart: methodological considerations. Pflugers Arch. 437 (6), 979-985 (1999).
  13. Roth, D. M., Swaney, J. S., Dalton, N. D., Gilpin, E. A., Ross, J. Jr Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol. 282 (6), H2134-H2140 (2002).
  14. Pearlman, A. S., Stevenson, J. G., Baker, D. W. Doppler echocardiography: applications, limitations and future directions. Am J Cardiol. 46 (7), 1256-1262 (1980).
  15. Bauer, M., et al. Echocardiographic speckle-tracking based strain imaging for rapid cardiovascular phenotyping in mice. Circ Res. 108 (8), 908-916 (2011).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

112

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。