登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

In the protocol, we present a method to manufacture a small caliber stent-graft by sandwiching a balloon expandable stent between two electrospun nanofibrous polyurethane layers.

摘要

Stent-grafts are widely used for the treatment of various conditions such as aortic lesions, aneurysms, emboli due to coronary intervention procedures and perforations in vasculature. Such stent-grafts are manufactured by covering a stent with a polymer membrane. An ideal stent-graft should have a biocompatible stent covered by a porous, thromboresistant, and biocompatible polymer membrane which mimics the extracellular matrix thereby promoting injury site healing. The goal of this protocol is to manufacture a small caliber stent-graft by encapsulating a balloon expandable stent within two layers of electrospun polyurethane nanofibers. Electrospinning of polyurethane has been shown to assist in healing by mimicking native extracellular matrix, thereby promoting endothelialization. Electrospinning polyurethane nanofibers on a slowly rotating mandrel enabled us to precisely control the thickness of the nanofibrous membrane, which is essential to achieve a small caliber balloon expandable stent-graft. Mechanical validation by crimping and expansion of the stent-graft has shown that the nanofibrous polyurethane membrane is sufficiently flexible to crimp and expand while staying patent without showing any signs of tearing or delamination. Furthermore, stent-grafts fabricated using the methods described here are capable of being implanted using a coronary intervention procedure using standard size guide catheters.

引言

冠状动脉介入治疗过程会由于斑块和血管壁的破坏显著血管壁损伤。这导致再狭窄,静脉移植物周围栓塞,冠状动脉管腔1-4的不连续性。为了避免这些并发症,一个有希望的战略将是覆盖了血管成形术的网站,这将潜在地抑制再狭窄,从血管腔的不连续性降低风险,防止周围栓塞血管表面。以前的研究已经比较裸金属支架,以支架移植物与支架移植5积极成果。研究人员已经使用了几种材料制造的膜,以覆盖支架。这包括合成的材料,如聚乙烯酯(PET),聚四氟乙烯(PTFE),聚氨酯(PU),以及硅或自体血管组织制造覆膜支架6-9。用于覆盖所述支架的理想移植材料应抗血栓的,非biodegradable,并应与没有过度增殖,炎症10天然组织整合。用于覆盖支架移植物材料还应促进支架移植物的愈合。

支架移植物被广泛用于主动脉缩窄,颈动脉的假性动脉瘤,动静脉瘘的治疗中,退化静脉移植,并大到巨型脑动脉瘤。但小口径支架移植物的发展是通过维持低轮廓和灵活性,这有助于在支架移植物11-14的部署的能力的限制。 PU为具有良好的机械强度,这是实现低轮廓和良好的柔韧性15,16所期望的性状的弹性体聚合物。除了具有良好的产能,支架移植还应促进快速愈合和内皮。 PU覆膜支架移植物表现出更好的生物相容性和增强的内皮17。研究者此前试图endothelialize PU与内皮细胞接种17它们覆盖支架移植物。聚氨酯的静电以创建纳米纤维基质已被证明是一种有价值的技术用于生产血管的移植物18,19。模仿天然细胞外基质的结构的纳米纤维的存在也是已知的,以促进内皮细胞增殖20,21。静电纺丝还允许在材料22的厚度的控制。制成的PU小口径血管移植已经研究了通过使用修饰如表面涂层,抗凝血剂,以及细胞增殖抑制剂,以促进愈合。所有这些修改都旨在调解主机接受和促进愈合的移植物23。

我们小组已经开发出可在动物模型24-26部署的球囊可扩张裸金属支架。电纺聚氨酯网格和球的组合OON扩张支架,使我们能够产生小口径球囊扩张支架移植物。大多数目前可用的支架移植物的经股动脉介入过程期间被引入,但只有少数商业覆膜支架可以引入1法国尺寸比为一个未膨胀的气球27需要更大。在这项研究中,我们通过包封静电聚氨酯的两层可被传递到一个经皮介入过程使用标准的8-9法国导向导管冠状动脉之间的球囊可扩张支架开发了小口径血管支架 - 移植物。

研究方案

1.聚氨酯静电的心轴收集

  1. 准备为芯棒静电
    1. 熔融约8ml生物相容的,食品级,水溶性载体材料在量筒(约9毫米直径和110毫米深)使用烘箱在155℃。
    2. 蘸直径为3毫米,长100毫米的不锈钢心轴,得到心轴的表面上的支撑材料的涂层。之前浸渍,放置心轴在烘箱中在155℃约15分钟,以提高心轴表面,这有助于在表面与熔融载体材料润湿的温度。
    3. 让浸渍芯棒冷却至约140℃,同时将熔融支撑材料凝固形成所述心轴表面上形成均匀的薄涂层。在冷却过程中,垂直悬挂的心轴,使得重力使过量支撑材料滴落。该涂料可轻松去除心轴成品支架 - 移植物的。
  2. (见图1)的静电系统的心轴收集器的设置
    1. 水平对齐实验室混合器并连接一个塑料杆,这将在通风柜内的相对端保持在不锈钢心轴上。
    2. 通过浸没仅心轴的前端在水中,以适应塑料支承杆在芯棒的端部溶解从心轴的前端的支撑材料。支持塑料支承杆在心轴的自由端,以协助在所述心轴收集器的均匀转动。
    3. 使用在塑料支撑杆固定螺丝来固定不锈钢轴和避免静电过程中滑倒。
    4. 由一个U形的地线附着到不锈钢心轴粉碎芯棒集电极。使用橡胶O形环以保持地线与心轴的两侧。
  3. Setti纳克了静电系统的液体聚氨酯挤出系统
    1. 混合,用25%(M / V)聚氨酯(PU)原液二甲基乙酰胺(DMA),以获得15%(M / V)的PU的DMA溶液( 例如 ,加6毫升的DMA到毫升25 9%的PU溶液)。
      警告!适当的个人防护设备通风橱内工作。
    2. 装满钝端不锈钢针(喷丝板)15%PU液5毫升的玻璃注射器。
    3. 编程注射器泵基于所述注射器的内直径为0.01毫升/分钟挤出。
    4. 安装与上水平与针尖端从心轴收集约20cm注射泵喷丝头注射器。从注射器的导电部分绝缘注射泵用橡胶片,以避免产生电弧。
    5. 高电压发生器连接到使用鳄鱼夹注射器的喷丝头。
  4. 以0.01毫升/分钟和轮状病毒运行注射器泵忒与实验室混合器以速度慢( 例如 ,50rpm下)中运行的心轴。
  5. 应用横跨喷丝头20千伏和集电极心轴的电压差。聚氨酯纳米纤维开始沉积在旋转的芯轴和薄层会在几分钟之内可见。确保通风柜被关闭,排气被关闭以避免纳米纤维的丧失。

2.静电纺丝支架移植物

  1. 上2小时的旋转心轴静电纺丝聚氨酯纳米纤维以产生均匀的管(如在步骤1中说明)。
  2. 从连接到实验室混合器塑料杆移除心轴来安装裸金属支架。取出芯棒,以保证残留溶剂烟雾被删除之前,打开通风柜和开放排气。
  3. 球囊可扩张不锈钢支架26上的静电管滑动到希望的位置。它可能需要稍微膨胀所述支架使其SLIPS上而不损坏静电管。
  4. 卷曲的支架,以确保将支架紧紧地设置在管材料上的心轴,而不是足够松滑动。这也将有助于防止内层和外层的分层。
  5. 再次装入管和支架芯轴上的实验室混合器的塑料杆为静电的支架移植物的外层。
  6. 如步骤1中说明的3小时静电纺丝纳米纤维来制造支架移植物的外层。
  7. 后静电外之后,沿圆周切断的PU材料从用手术刀在支架的端部大约为1毫米。
  8. 泡与支架移植物的心轴在去离子水中,以从其中将来自心轴释放支架移植物的心轴溶解支撑材料。根据需要,以完全溶解载体材料用新鲜水替换。
  9. 一旦支撑材料被溶解,轻轻取出从T支架移植他芯棒并晾干。考虑允许空气干燥之前浸泡在去离子水,以溶解任何残留的支撑材料去除的支架移植物。

3.人造支架移植物的测试

  1. 上滑动3毫米三折气球的支架移植物。
  2. 压接支架移植使用上举行接工具手气球。
  3. 检查使用均匀卷边和类似的覆盖材料的剥离或穿刺失败的由于支架变形任何其他标志显微镜卷曲支架 - 移植物。
  4. 通过与充气装置和水加压三折球囊展开支架移植物,以3毫米的设计直径。再次,检查扩张的支架移植物的均匀膨胀和衰竭的迹象。

结果

我们electrospinner设置( 图1)导致了高品质的聚氨酯纳米纤维( 图2)。的支架-移植物是通过电的聚氨酯的内层到心轴,在该层之上滑动裸金属支架,和静电聚氨酯第二外层( 图3)制造的。聚氨酯纳米纤维以50微米/小时的速率,这导致在100μm的内层和150微米的支架移植物的外层电纺丝。用这里介绍的协议静电导致均匀的纳米纤维的聚氨酯的层( 图4...

讨论

We have developed a fabrication technique for a small caliber stent-graft which can be deployed using a standard percutaneous coronary intervention (PCI) procedure. Stent-grafts currently available are limited in their ability to maintain a low profile and flexibility for deployment. Bare metal stents developed by our group in our previous studies have proven to assist in rapid healing of the stented artery24,26. Various polymers have been electrospun by other groups and polyurethane has been proven biostable ...

披露声明

作者宣称,他们没有竞争的经济利益。

致谢

We would like to thank the Division of Engineering, Mayo Clinic for their technical support. This study was financially supported by European Regional Development Fund - FNUSA-ICRC (No. CZ.1.05/1.100/02.0123), National Institutes of Health (T32 HL007111), American Heart Association Scientist Development Grant (AHA #06-35185N), and The Grainger Innovation Fund - Grainger Foundation.

材料

NameCompanyCatalog NumberComments
Glass syringeAir Tite7.140-33Syringe for spinneret
Graduated cylinder 5 mLFisher Scientific08-552-4G5 mL pyrex graduated cylinder about 9mm diameter and 11 cm long
High voltage generatorBertan Accociates, Inc.205A-30PUsed to apply voltage difference across spinneret and collector
Laboratory mixer with rpm controlScilogexSCI-84010201Available from various laboratory equipment suppliers
PolyurethaneDSMBioSpan SPUBiospan Segmented Polyurethane
Rubber sheetMcMaster Carr1370N11Used to insulate syringe during electrospinning
Stainless steel mandrelN/AN/AManufactured 
Stainless steel needleHamilton91018Used as spinneret in electrospinning
Support materialEnvisionTecB04-HT-DEMOMATBiocompatible water soluble material
Syringe PumpHarvard Apparatus55-3333

参考文献

  1. Elsner, M., et al. Coronary stent grafts covered by a polytetrafluoroethylene membrane. Am. J. Cardiol. 84 (3), 335-338 (1999).
  2. Störger, H., Haase, J. Polytetrafluoroethylene-Covered Stents: Indications, Advantages, and Limitations. J. Interv. Cardiol. 12 (6), 451-456 (1999).
  3. Moreno, P. R., et al. Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina. Circulation. 94 (12), 3098-3102 (1996).
  4. Briguori, C., Sarais, C., Colombo, A. The polytetrafluoroethylene-covered stent: a device with multiple potential advantages. Int. J. Cardiovasc. Interv. 4 (3), 145-149 (2001).
  5. Qureshi, M. A., Martin, Z., Greenberg, R. K. Endovascular management of patients with Takayasu arteritis: stents versus stent grafts. Semin. Vasc. Surg. 24 (1), 44-52 (2011).
  6. Ahmadi, R., Schillinger, M., Maca, T., Minar, E. Femoropopliteal arteries: immediate and long-term results with a Dacron-covered stent-graft. Radiology. 223 (2), 345-350 (2002).
  7. Geremia, G., et al. Experimental arteriovenous fistulas: treatment with silicone-covered metallic stents. AJNR. Am. J. Neuroradiol. 18 (2), 271-277 (1997).
  8. Saatci, I., et al. Treatment of internal carotid artery aneurysms with a covered stent: experience in 24 patients with mid-term follow-up results. AJNR. Am. J. Neuroradiol. 25 (10), 1742-1749 (2004).
  9. Stefanadis, C., et al. Stents Wrapped in Autologous Vein: An Experimental Study1. J. Am. Coll. Cardiol. 28 (4), 1039-1046 (1996).
  10. Palmaz, J. C. Review of polymeric graft materials for endovascular applications. J. Vasc. Interv. Radiol. 9, 7-13 (1998).
  11. Bruckheimer, E., Dagan, T., Amir, G., Birk, E. Covered Cheatham-Platinum stents for serial dilation of severe native aortic coarctation. Catheter Cardiovasc. Interv. 74 (1), 117-123 (2009).
  12. Tzifa, A., et al. Covered Cheatham-platinum stents for aortic coarctation: early and intermediate-term results. J. Am. Coll. Cardiol. 47 (7), 1457-1463 (2006).
  13. Kuraishi, K., et al. Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J. Biomed. Mater. Res. Part B Appl. Biomater. 88 (1), 230-239 (2009).
  14. Pant, S., Bressloff, N. W., Limbert, G. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model Mechanobiol. 11 (1-2), 61-82 (2012).
  15. Muller-Hulsbeck, S., et al. Experience on endothelial cell adhesion on vascular stents and stent-grafts: first in vitro results. Invest. Radiol. 37 (6), 314-320 (2002).
  16. Sarkar, S., Salacinski, H. J., Hamilton, G., Seifalian, A. M. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31 (6), 627-636 (2006).
  17. Shirota, T., Yasui, H., Shimokawa, H., Matsuda, T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials. 24 (13), 2295-2302 (2003).
  18. Grasl, C., et al. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res. A. 93 (2), 716-723 (2010).
  19. Kidoaki, S., Kwon, I. K., Matsuda, T. Structural features and mechanical properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res. Part B Appl. Biomater. 76 (1), 219-229 (2006).
  20. Stegemann, J. P., Kaszuba, S. N., Rowe, S. L. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13 (11), 2601-2613 (2007).
  21. Sankaran, K. K., Subramanian, A., Krishnan, U. M., Sethuraman, S. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnol. J. 10 (1), 96-108 (2015).
  22. Gibson, P., Schreuder-Gibson, H., Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf., A. 187, 469-481 (2001).
  23. Zdrahala, R. J. Small caliber vascular grafts. Part II: Polyurethanes revisited. J. Biomater. Appl. 11 (1), 37-61 (1996).
  24. Uthamaraj, S., et al. Design and validation of a novel ferromagnetic bare metal stent capable of capturing and retaining endothelial cells. Ann. Biomed. Eng. 42 (12), 2416-2424 (2014).
  25. Tefft, B. J., et al. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles. J. Vis. Exp. (105), e53099 (2015).
  26. Uthamaraj, S., et al. Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention. J. Vis. Exp. (103), e53100 (2015).
  27. de Giovanni, J. V. Covered stents in the treatment of aortic coarctation. J. Interv. Cardiol. 14 (2), 187-190 (2001).
  28. Hans, F. J., et al. Treatment of wide-necked aneurysms with balloon-expandable polyurethane-covered stentgrafts: experience in an animal model. Acta. Neurochir. (Wien). 147 (8), 871-876 (2005).
  29. Hasan, A., et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta. Biomater. 10 (1), 11-25 (2014).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

116

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。