A subscription to JoVE is required to view this content. Sign in or start your free trial.
In the protocol, we present a method to manufacture a small caliber stent-graft by sandwiching a balloon expandable stent between two electrospun nanofibrous polyurethane layers.
Stent-grafts are widely used for the treatment of various conditions such as aortic lesions, aneurysms, emboli due to coronary intervention procedures and perforations in vasculature. Such stent-grafts are manufactured by covering a stent with a polymer membrane. An ideal stent-graft should have a biocompatible stent covered by a porous, thromboresistant, and biocompatible polymer membrane which mimics the extracellular matrix thereby promoting injury site healing. The goal of this protocol is to manufacture a small caliber stent-graft by encapsulating a balloon expandable stent within two layers of electrospun polyurethane nanofibers. Electrospinning of polyurethane has been shown to assist in healing by mimicking native extracellular matrix, thereby promoting endothelialization. Electrospinning polyurethane nanofibers on a slowly rotating mandrel enabled us to precisely control the thickness of the nanofibrous membrane, which is essential to achieve a small caliber balloon expandable stent-graft. Mechanical validation by crimping and expansion of the stent-graft has shown that the nanofibrous polyurethane membrane is sufficiently flexible to crimp and expand while staying patent without showing any signs of tearing or delamination. Furthermore, stent-grafts fabricated using the methods described here are capable of being implanted using a coronary intervention procedure using standard size guide catheters.
Coronary intervention procedures cause significant vessel wall injury due to disruption of the plaque and vessel wall. This results in restenosis, peripheral embolism in vein grafts, and discontinuity of coronary lumen1-4. To avoid these complications, a promising strategy will be to cover the vascular surface in the angioplasty site, which will potentially inhibit restenosis, mitigate risks from discontinuity of vessel lumen, and prevent peripheral embolism. Previous studies have compared bare metal stents to stent-grafts with positive outcomes for stent-grafts5. Researchers have used several materials to manufacture membranes to cover the stents. This includes synthetic materials like polyethylene tetraphthalate (PET), polytetrafluoroethylene (PTFE), polyurethane (PU), and silicon or autologous vessel tissue to manufacture covered stents6-9. An ideal graft material used to cover the stent should be thromboresistant, non-biodegradable, and should integrate with native tissue without excessive proliferation and inflammation10. The graft material used to cover the stent should also promote healing of the stent-graft.
Stent-grafts are widely used for the treatment of aortic coarctation, pseudo-aneurysms of the carotid artery, arteriovenous fistulae, degenerated vein grafts, and large to giant cerebral aneurysms. But the development of small caliber stent-grafts is limited by the ability to maintain low profile and flexibility, which aids in deployment of the stent-grafts11-14. PU is an elastomeric polymer with good mechanical strength which is a desired trait for achieving a low profile and good flexibility15,16. In addition to having good deliverability, stent-grafts should also promote rapid healing and endothelialization. PU covered stent-grafts have demonstrated better biocompatibility and enhanced endothelialization17. Researchers have previously tried to endothelialize PU covered stent-grafts by seeding them with endothelial cells17. Electrospinning of PU to create nanofiber matrix has been shown to be a valuable technique for the production of vascular grafts18,19. The existence of nanofibers that mimic the architecture of native extracellular matrix is also known to promote endothelial cell proliferation20,21. Electrospinning also allows for control over the thickness of the material22. Small caliber vascular grafts made of PU have been studied to promote healing by using modifications such as surface coatings, anti-coagulants, and cell proliferation suppressants. All these modifications are designed to mediate host acceptance and promote graft healing23.
Our group has developed a balloon expandable bare metal stent which can be deployed in animal models24-26. The combination of an electrospun polyurethane mesh and a balloon expandable stent has enabled us to generate small caliber balloon expandable stent-grafts. Most of the currently available stent-grafts are introduced through the femoral artery during an interventional procedure, but only a few commercial covered stents can be introduced 1 French size larger than that required for an un-inflated balloon27. In this study we have developed a small caliber vascular stent-graft by encapsulating a balloon expandable stent between two layers of electrospun PU which can be delivered to a coronary artery using a standard 8-9 French guide catheter in a percutaneous interventional procedure.
1. Electrospinning of Polyurethane on Mandrel Collector
2. Electrospinning a Stent-graft
3. Testing of Manufactured Stent-grafts
Our electrospinner setup (Figure 1) has resulted in high quality polyurethane nanofibers (Figure 2). A stent-graft is manufactured by electrospinning an inner layer of polyurethane onto a mandrel, slipping a bare metal stent over this layer, and electrospinning a second outer layer of polyurethane (Figure 3). Polyurethane nanofibers are electrospun at the rate of 50 µm/hr, which results in an inner layer of 100 µm and an outer layer of 150 µm on the stent-...
We have developed a fabrication technique for a small caliber stent-graft which can be deployed using a standard percutaneous coronary intervention (PCI) procedure. Stent-grafts currently available are limited in their ability to maintain a low profile and flexibility for deployment. Bare metal stents developed by our group in our previous studies have proven to assist in rapid healing of the stented artery24,26. Various polymers have been electrospun by other groups and polyurethane has been proven biostable ...
The authors declare that they have no competing financial interests.
We would like to thank the Division of Engineering, Mayo Clinic for their technical support. This study was financially supported by European Regional Development Fund - FNUSA-ICRC (No. CZ.1.05/1.100/02.0123), National Institutes of Health (T32 HL007111), American Heart Association Scientist Development Grant (AHA #06-35185N), and The Grainger Innovation Fund - Grainger Foundation.
Name | Company | Catalog Number | Comments |
Glass syringe | Air Tite | 7.140-33 | Syringe for spinneret |
Graduated cylinder 5 mL | Fisher Scientific | 08-552-4G | 5 mL pyrex graduated cylinder about 9mm diameter and 11 cm long |
High voltage generator | Bertan Accociates, Inc. | 205A-30P | Used to apply voltage difference across spinneret and collector |
Laboratory mixer with rpm control | Scilogex | SCI-84010201 | Available from various laboratory equipment suppliers |
Polyurethane | DSM | BioSpan SPU | Biospan Segmented Polyurethane |
Rubber sheet | McMaster Carr | 1370N11 | Used to insulate syringe during electrospinning |
Stainless steel mandrel | N/A | N/A | Manufactured |
Stainless steel needle | Hamilton | 91018 | Used as spinneret in electrospinning |
Support material | EnvisionTec | B04-HT-DEMOMAT | Biocompatible water soluble material |
Syringe Pump | Harvard Apparatus | 55-3333 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved