需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
Mice bearing the Colon-26 (C26) carcinoma represent a classical model of cancer cachexia. Progressive muscle wasting occurs in association with tumor growth, over-expression of muscle-specific ubiquitin ligases, and reductions in muscle cross-sectional area. Fat loss is also observed. Cachexia is studied in a time-dependent manner with increasing severity of wasting.
Cancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.
肌肉消瘦是各种临床病症,如癌症,败血症,肝,肝硬化,心脏和肾功能衰竭,慢性阻塞性肺疾病,与爱滋病的严重并发症。特别是,肌肉消瘦在癌症患者1的至少50%是显而易见的。在从增加的蛋白质降解由于骨骼肌蛋白水解系统和/或从的过度活化癌症结果骨骼肌损失蛋白质合成6下降。脂解也是明显的,导致脂肪组织的消耗。在临床上,恶病质与减少质量和生活的长度相关联,并且估计为死亡的20的原因-癌症患者7的30%。实验模型,尽可能地类似于人类疾病的使用将是有益的。最佳动物模型的特点是高的再现性,以及由来自不同疗法有限干扰和不可预知的因素饮食,性别,遗传背景,通常是与临床病症8相关联。到目前为止,癌症恶病质已经主要研究了在动物模型特征在于癌细胞或致癌物注射的移植,虽然新的方法是使用转基因小鼠易患癌症的发展。
荷的C26癌(也被称为结肠-26和腺癌)代表癌症恶病质2,5的充分表征的和广泛使用的模型。的C26肿瘤导致的身体和肌肉重量损失的生长,主要是通过加强脂肪和蛋白质分解代谢9。一般地,10%的肿瘤重量与总体重与减少的骨骼肌重量20-25%和脂肪3,10更大消耗相关联。肝脾肿大也与肿瘤生长观察,与急性期反应的活化和促infla的高度沿mmatory细胞因子水平3,11。在这些中,它是众所周知的,IL-6起着在C26模型中介肌肉消瘦举足轻重的作用,即使该细胞因子可能不是恶病质12的唯一诱导剂。升高的IL-6引起肌肉萎缩通过JAK / STAT3通路的活化,并且抑制该转录因子能够防止肌肉萎缩3,4。
期间C26诱导肌肉消瘦,如肌肉萎缩的许多条件,肌肉质量在很大程度上是通过横跨肌纤维在肌肉蛋白质含量减少丢失,不通过细胞死亡或纤维13的损失。在C26恶病质,向更小的截面积的移位在两个糖酵解和氧化纤维2被观察到。这也具有降低的肌力5一致。全球许多团体,以便及时发现癌症CAC肌肉萎缩的新的调解员或临床相关的药品采取了C26型号的优势河虾。然而,对于使用这种模式的许多不同的程序已经报道,提高对所获得的数据的一致性的担忧,并在不同的实验条件下构成障碍重复性。这里,我们报告的产生标准化的和可重复的数据癌症恶病质的研究中通常会使用此模式。
伦理学声明:描述了托马斯·杰斐逊大学的机构动物护理和使用委员会和医学的印第安纳大学医学院获得批准的所有研究。
1. C26细胞生长和准备
2.小鼠
3.安乐死和采血车
4.组织和器官切除
注:对于使用生物化学和分子生物学实验的组织,计划权衡每个器官和组织,并立即将一个片段插入预先标记的冷冻管。快冷冻在液氮中,并储存于-80℃。
5.肌肉冻结和安装
6.原始数据的分析
7.肌肉切片
8.评估肌纤维大小的层粘连蛋白免疫(方案1)
注:对于肌肉形态和截面积(CSA),苏木精和伊红(H&E)的评价-以及免疫荧光(IF)为基础的染色方法是接受系统,以确定纤维尺寸19。虽然肌肉切片的H&E染色代表形态分析有价值的,方便的方法,使用一个IF方法14是显著更快,谦虚比基于E-H&方法更准确。 H&E方法描述如下。
9.从H&E染色切片肌纤维大小的评估(方案2)
10.数据收集和分析
C26肿瘤生长动力学显示第一个7滞后相位 - 注射后8天,随后指数细胞生长(4 - 5 D)。肿瘤块最终到达〜体重的10%(约2克; 图 1A-B)。在第一阶段中,肿瘤可以仅触诊被定位和显示为皮肤的一小突出部。在第二阶段中,肿瘤被观察为在皮肤下质量。很少,肿瘤变得溃烂,导致一个开放的伤口;在这种情况下,鼠标从实验组中排除,并且安乐死。
特别是在其最新的阶段,大肠癌与恶病质的发展,这是负责不良预后和患者的生活质量降低有关。许多研究都集中在继发于癌症疾病的治疗;然而,尽管在这个方向上许多努力,但仍是癌症恶病质21没有批准的治疗。因此,当务之急是动物模型,以便最大限度地发现的翻译尽可能类似于人体病理学。
C26荷瘤小鼠是癌症恶病质22-24的一种常用的实验模型。这种模?...
The authors have nothing to disclose.
We thank Richard Lieber and Shannon Bremner for their ImageJ macro and instructions. While at Thomas Jefferson University, this work was supported by the Pennsylvania Department of Health CURE Grant TJU No. 080-37038-AI0801. Subsequently, this study was supported by a grant to AB from the National Institutes of Health (R21CA190028), and by grants to TAZ from the National Institutes of Health (R01CA122596, R01CA194593), the IU Simon Cancer Center, the Lustgarten Foundation, the Lilly Foundation, Inc., and the IUPUI Pancreas Signature Center.
Name | Company | Catalog Number | Comments |
Cell culture Flasks | Falcon - Becton Dickinson | 35-5001 | |
DMEM | Cellgro | 10-017-CV | |
FBS | Gibco | 26140 | |
Streptomycin-Penicillin | Cellgro | 30-002-CI | |
CD2F1 mice | Harlan | 060 | |
Anesthesia apparatus | EZ-Anesthesia | EZ-7000 | |
2-Methyl Butane | Sigma-Aldrich | M32631 | |
OCT | Tissue-Tek | 4583 | |
Cryostat | Leica | CM1850 | |
Cork disks | Electron Microscopy Sciences | 63305 | |
Superfrost plus glass slides | VWR | 48311-703 | |
Anti-Laminin Rabbit polyclonal antibody | Sigma-Aldrich | L9393 | |
Anti-Dystrophin Mouse Monoclonal antibody | Vector Laboratories | VP-D508 | |
Alexa Flour 594 anti-mouse IgG | Life Technologies | A11062 | |
Alexa Flour 594 anti-rabbit IgG | Life Technologies | A21211 | |
Hematoxylin | Sigma-Aldrich | GHS216 | |
Eosin | Sigma-Aldrich | HT110332 | |
Xylene | Acros Organics | 422680025 | |
Cytoseal-XYL | Thermo | 8312-4 | |
Microscope | Zeiss | Observer.Z1 | |
Bamboo Tablet | Wacom | CTH-661 | |
Prism 7.0 for Mac OS X | GraphPad Software, Inc. | ||
Excel for Mac 2011 | Microsoft Corp. | ||
Image J | US National Institutes of Health | IJ1.46 | http://rsbweb.nih.gov/ij/download.html |
Microtainer | BD | 365873 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。