需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
A strategy for generating mutations in histone genes at their endogenous location in Saccharomyces cerevisiae is presented.
We describe a PCR- and homologous recombination-based system for generating targeted mutations in histone genes in budding yeast cells. The resulting mutant alleles reside at their endogenous genomic sites and no exogenous DNA sequences are left in the genome following the procedure. Since in haploid yeast cells each of the four core histone proteins is encoded by two non-allelic genes with highly homologous open reading frames (ORFs), targeting mutagenesis specifically to one of two genes encoding a particular histone protein can be problematic. The strategy we describe here bypasses this problem by utilizing sequences outside, rather than within, the ORF of the target genes for the homologous recombination step. Another feature of this system is that the regions of DNA driving the homologous recombination steps can be made to be very extensive, thus increasing the likelihood of successful integration events. These features make this strategy particularly well-suited for histone gene mutagenesis, but can also be adapted for mutagenesis of other genes in the yeast genome.
四个核心组蛋白H2A,H2B,H3和H4中的压实,组织,和真核染色体的功能发挥中心作用。两套各这些组蛋白的形成的组蛋白八聚体,即指示本身周围的DNA的〜147碱基对的环绕一个分子卷轴,最终导致核小体1的形成。核小体是在各种基于染色体过程,如基因转录的调节和常染色质的形成和异跨染色体积极参与者,因此已经深入研究在过去几十年的过程中的焦点。已经描述了许多机制由核小体可以在方法,可以方便特定进程的执行被操纵 - 这些机制包括组蛋白残基的翻译后修饰,依赖ATP的核小体重构,和ATP依赖性核重组和装配/拆卸2,3。
在芽殖酵母是组蛋白功能的真核生物的理解一个特别强大的模型生物。这在很大程度上归因于整个域真核生物高度组蛋白的进化保守的和酵母的各种遗传和生化实验的方法顺从4。在酵母反向遗传方法已被广泛用于研究染色质生物学的各个方面的具体组蛋白突变的影响。对于这些类型的实验,常常优选使用,其中所述突变体组蛋白从其天然基因组位点表达的细胞,如从自主质粒表达可导致组蛋白的异常细胞内水平(由于细胞不同质粒的数量),并染色质恩伴随变更vironments,它可以混淆最终结果的解释。
在这里,我们描述了一种基于PCR的技术,其允许在不需要在所需突变的生成而不在基因组中剩余的外源DNA序列的克隆步骤和结果其天然基因组的位置的组蛋白的基因的靶向诱变。这种技术利用了有效的同源重组系统的在酵母和具有几个共同的特征与其它组开发的其他类似的技术-尤其是在Delitto普菲 ,位点特异性基因组(SSG)诱变和克隆-自由基于PCR的等位基因替换方法5,6,7。然而,我们描述的技术存在,使得它特别适合于组蛋白基因的突变的一个方面。在单倍体酵母细胞中,每四个核心组蛋白是由两个非一个编码llelic和高度同源的基因:例如,组蛋白H3由HHT1和HHT2基因编码,而两个基因的开放阅读框(ORFs)在序列90%以上相同。这种高度的同源性可以变得复杂设计成特异性靶向诱变两个组蛋白编码基因中的一个实验。而上述的方法通常要求使用的靶基因的ORF内的至少一些序列来驱动同源重组,我们在这里描述的技术利用侧翼组蛋白基因的开放阅读框(共用少得多的序列同源性)序列的的重组步骤,从而增加至所需的轨迹诱变成功定位的可能性。此外,驱动重组同源区可以是非常广泛的,从而进一步提高效率的有针对性的同源重组。
注:有针对性的原位组蛋白基因突变实验策略包括以下几个步骤( 图1中总结)。这些步骤包括:(1)与URA3基因的靶组蛋白基因的置换,(2)产生与对应于两个使用引物携带所需突变(s)时,目标组蛋白基因的部分重叠的片段的PCR产物的纯化(3 )这两个部分重叠的片段的融合的PCR,以获得充分的大小的PCR产物为一体,(4)的全尺寸的PCR产物和骨架质粒共转化,并选择对质粒的标记,(5)画面5-FOA抗性转化体,(6)5-FOA抗性菌落的纯化和骨架质粒的损失,和(7)的分子分析,以测定为突变等位基因的适当整合。
图1:目标在原地突变在芽殖酵母基因组蛋白的战略概述。在这个例子中,靶基因是HHT2的,但任何其它核心组蛋白基因也可使用这种策略诱变。 (A)的单倍体酵母细胞怀有布置在两个组蛋白H3编码基因(HHT1和HHT2)和两个组蛋白H4编码基因(HHF1和HHF2)如该图所示(该HHT1和HHF1基因位于第II染色体和HHT2和HHF2基因位于染色体XIV -在每种情况下,箭头指向在转录的方向上)。在该过程的第一步骤中,HHT2基因的ORF被替换为URA3基因,从而产生一种hht2Δ:: URA3菌株。 (B)在部分1中,从基因组DNA样本的HHT2基因的野生型拷贝用作模板两个PCR反应到属TE上基因的两个部分重叠的片段。用于第一反应中的反向引物包括一个或多个错配的核苷酸(用红色圆圈表示)对应于被引入到基因组中的期望的突变。用于第二反应的正向引物具有在反向互补构造(也用红色圆圈表示)相当于不匹配。在部分1中产生的两个PCR产物(产物a和b)随后被用作使用在部分2中示出退火在时尚产品a和b这导致全尺寸的PCR产生两种引物用于融合PCR的模板产品(产品C在第3部分)携带所需突变。 (C)中hht2Δ:: URA3应变然后共转化与全尺寸的PCR产物和骨架质粒(一个HIS3-标记在本实施例中的质粒),以及细胞被选择用于质粒的存在(在缺乏媒体H在本实施例istidine)。然后转化体进行筛选5-FOA抗性-抗性细胞是已经历同源重组事件导致URA3基因的PCR产物和切除的一体化,如图候选者。通过有丝分裂细胞分裂的骨架质粒的后续丧失导致最终所需组蛋白突变体菌株。我们已经找到了骨架质粒的该选择,然后在的正确整合事件的识别相比,对5-FOA平板直接选择,这主要是标识已获得自发URA3突变的细胞的高得多的频率筛选5-FOA抗性的结果。 (这个数字已经从14参考修改)。 请点击此处查看该图的放大版本。
1.目标组蛋白基因的置换与URA3基因
2.生成和使用的引物携带所需突变对应于目标组蛋白基因的两个部分重叠的片段的PCR产物的纯化(S)
3.融合两个部分覆盖片段的PCR获取全尺寸PCR产品进行整合
全尺寸PCR产品和骨架质粒4.共转化,与选择标记质粒
5.屏幕5-FOA抗性转化
6.净化5-FOA抗性菌落和骨干质粒的损失
7.分子分析为测定突变等位基因的适当整合
我们描述一个hht2等位基因表达组蛋白H3突变蛋白从精氨酸作为靶向原位诱变策略的代表性例子窝藏在53位的取代为谷氨酸(H3-R53E突变体)的产生。
我们产生其中HHT2的完整ORF被URA3基因(见协议的步骤1)代替的菌株。该菌株,yAAD156,也藏着his3Δ200等位基因,这将导致细胞是营养缺陷型组氨酸。?...
序列同源性的高水平的两个非等位基因,对于每个在单倍体酿酒酵母细胞中的四个核心组蛋白的代码可以表示谁希望特异性靶向两个基因诱变之一调查一个挑战之间。先前描述的酵母诱变方法,包括Delitto普菲 ,位点特异性基因组(SSG)诱变和自由克隆基于PCR的等位基因替换方法5,6,7,以及更近的酵母基于CRISPR?...
The authors declare that they have no competing financial interests.
We thank Reine Protacio for helpful comments during the preparation of this manuscript. We express our gratitude to the National Science Foundation (grants nos. 1243680 and 1613754) and the Hendrix College Odyssey Program for funding support.
Name | Company | Catalog Number | Comments |
1 kb DNA Ladder (DNA standards) | New England BioLabs | N3232L | |
Agarose | Sigma | A5093-100G | |
Boric Acid | Sigma | B0394-500G | |
dNTP mix (10 mM each) | ThermoFisher Scientific | R0192 | |
EDTA solution (0.5 M, pH 8.0) | AmericanBio | AB00502-01000 | |
Ethanol (200 Proof) | Fisher Scientific | 16-100-824 | |
Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) | Sigma | E4884-500G | |
Lithium acetate dihydrate | Sigma | L6883-250G | |
MyCycler Thermal Cycler | BioRad | 170-9703 | |
Poly(ethylene glycol) (PEG) | Sigma | P3640-1KG | |
PrimeSTAR HS DNA Polymerase (high fidelity DNA polymerase) and 5x buffer | Fisher Scientific | 50-443-960 | |
Salmon sperm DNA solution | ThermoFisher Scientific | 15632-011 | |
Sigma 7-9 (Tris base, powder form) | Sigma | T1378-1KG | |
Sodium acetate trihydrate | Sigma | 236500-500G | |
Supra Sieve GPG Agarose (low metling temperature agarose) | AmericanBio | AB00985-00100 | |
Taq Polymerase and 10x Buffer | New England BioLabs | M0273X | |
Toothpicks | Fisher Scientific | S67859 | |
Tris-HCl (1 M, pH 8.0) | AmericanBio | AB14043-01000 | |
a-D(+)-Glucose | Fisher Scientific | AC170080025 | for yeast media |
Agar | Fisher Scientific | DF0140-01-0 | for yeast media |
Peptone | Fisher Scientific | DF0118-07-2 | for YPD medium |
Yeast Extract | Fisher Scientific | DF0127-17-9 | for YPD medium |
4-aminobenzoic acid | Sigma | A9878-100G | for complete minimal dropout medium |
Adenine | Sigma | A8626-100G | for complete minimal dropout medium |
Glycine hydrochloride | Sigma | G2879-100G | for complete minimal dropout medium |
L-Alanine | Sigma | A7627-100G | for complete minimal dropout medium |
L-Arginine monohydrochloride | Sigma | A5131-100G | for complete minimal dropout medium |
L-Asparagine monohydrate | Sigma | A8381-100G | for complete minimal dropout medium |
L-Aspartic acid sodium salt monohydrate | Sigma | A6683-100G | for complete minimal dropout medium |
L-Cysteine hydrochloride monohydrate | Sigma | C7880-100G | for complete minimal dropout medium |
L-Glutamic acid hydrochloride | Sigma | G2128-100G | for complete minimal dropout medium |
L-Glutamine | Sigma | G3126-100G | for complete minimal dropout medium |
L-Histidine monohydrochloride monohydrate | Sigma | H8125-100G | for complete minimal dropout medium |
L-Isoleucine | Sigma | I2752-100G | for complete minimal dropout medium |
L-Leucine | Sigma | L8000-100G | for complete minimal dropout medium |
L-Lysine monohydrochloride | Sigma | L5626-100G | for complete minimal dropout medium |
L-Methionine | Sigma | M9625-100G | for complete minimal dropout medium |
L-Phenylalanine | Sigma | P2126-100G | for complete minimal dropout medium |
L-Proline | Sigma | P0380-100G | for complete minimal dropout medium |
L-Serine | Sigma | S4500-100G | for complete minimal dropout medium |
L-Threonine | Sigma | T8625-100G | for complete minimal dropout medium |
L-Tryptophan | Sigma | T0254-100G | for complete minimal dropout medium |
L-Tyrosine | Sigma | T3754-100G | for complete minimal dropout medium |
L-Valine | Sigma | V0500-100G | for complete minimal dropout medium |
myo-Inositol | Sigma | I5125-100G | for complete minimal dropout medium |
Uracil | Sigma | U0750-100G | for complete minimal dropout medium |
Ammonium Sulfate | Fisher Scientific | A702-500 | for complete minimal dropout medium |
Yeast Nitrogen Base | Fisher Scientific | DF0919-07-3 | for complete minimal dropout medium |
5-Fluoroorotic acid (5-FOA) | AmericanBio | AB04067-00005 | for 5-FOA medium |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。