JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里, 我们提出了一个协议, 形成脂质双层使用接触气泡双层法。水泡被吹入有机溶剂, 藉以单层被形成在水油接口。两个移液器纵 , 以停靠气泡 , 形成一个双层。

摘要

脂质双层为离子通道的功能研究提供了一个独特的实验平台, 可以检查不同膜脂组成下的通道膜相互作用。其中, 液滴界面双层得到了普及;然而, 大的膜尺寸阻碍了低电气背景噪声的记录。我们建立了一种接触气泡双层 (cbb) 方法, 该方法结合了平面脂质双层和膜片钳方法的优点, 如分别改变脂质成分和操纵双层力学的能力。利用该设置进行常规的膜片钳实验, 可以很容易地进行基于 cbb 的实验。简而言之, 玻璃移液器中的电解质溶液被吹入有机溶剂相 (十六烷), 并保持移液器压力以获得稳定的气泡尺寸。气泡是自发内衬的脂质单层 (纯脂质或混合脂质), 这是由泡泡中的脂质体提供。接下来, 玻璃移液器顶端的两个单衬气泡 (直径约 50μm) 被对接, 以形成双层。将通道重组脂质体引入气泡, 可将通道插入双层机中, 从而允许单通道电流记录, 其信噪比与膜片钳记录的信噪比相当。脂质成分不对称的 cbb 很容易形成。cbb 通过吹灭之前的泡沫并形成新的泡沫, 反复更新。各种化学和物理扰动 (膜灌注和双层张力) 可对 cbb 施加, 本文介绍了 cbb 形成的基本步骤。

引言

对于离子通道, 细胞膜不仅仅是一种支撑材料, 而是产生离子通量的伙伴。在功能上, 膜是一种电绝缘体, 其中嵌入离子通道, 所有细胞膜都具有静止膜的潜力。通常情况下, 从外部电路施加任意膜电位, 通过外部电路测量通过通道的电流。这种对不同膜电位离子通量的定量评价揭示了这些通道的分子性质, 如离子选择性渗透和门控功能1,2。用于离子通道功能研究的膜平台是细胞膜或脂质双层膜。从历史上看, 单通道电流记录首先是在脂质双层34中进行的, 并为细胞膜开发了相关技术, 如膜片钳法 (1 a))5,6。此后, 这两种技术分别为不同的目的而发展 (图 1)78.

膜脂质和双层膜因其在支持通道蛋白结构和功能方面的作用而成为目前研究的热点。因此, 对改变双层脂质成分的方法的现成性要求很高。脂质双层形成方法, 如平面脂质双层 (plb)8,9, 10, 11, 水油液滴双层 12, 液滴界面双层 (dib)13,14,15,16,17,18,19种技术 (图 1) 是常见的选择, 为检查不同脂质成分下的通道功能提供了机会20。虽然 dib 在技术上比传统的 plb 更容易生产, 但 dib 的大尺寸已经阻碍了补丁夹持器将其应用于研究具有通常大小电导 (& lt;100 ps) 的单通道电流记录。

为了避开背景噪音, 必须将双层区域降至最低。这个问题让人想起了在发展脂质双层电生理技术的过程中的重复历史 (图 1)。在早期, 在移液器的尖端形成了一个小尺寸的双层 (直径 1-30μm) (倾角法;图 1c)21,22,23, 而不是在室内疏水间隔上使用独立的双层 (直径约 100μm) (图 1b)。该方法允许在背景噪声更低的情况进行电气测量24。我们在公共小巴2526、尖浸 222327和膜片夹具 2829、30方面的经验,31 种方法使我们提出了一种利用油中水双层的原理形成脂质双层的新思想。我们把这个称为接触气泡双层 (cbb) 方法20,32。在这种方法中, 水泡不是挂在油相中的水滴 (图 1d), 而是从玻璃移液器 (尖端直径约为 30μm) 吹到油相 (图 1e 和 2) 中, 其中气泡是通过施加稳定的压力来维持的。在气泡表面的水油界面上自发形成单层。然后, 通过两个玻璃移液器的操作对接两个气泡, 当两个单层相互接近时, 形成了双层, 产生了一个平衡的双层面积。气泡的大小由气泡内压力 (保持压力) 控制, 同样由双层尺寸控制。平均直径为50微米, 经常使用。虽然气泡的体积很小 (和 lt;100 的 pl), 但它与在微升范围内的移液器溶液的较大体积相连, 构成了体积电解质相。

使用 cbb 方法有许多好处 (表 1)。作为一种脂质双层形成技术, 可以产生各种脂质成分的膜, 而非对称膜比传统的折叠方法33更容易形成 32种.双层可以机械操作, 不像传统的 plb, 只能弯曲与静水压差34,35。通过改变保持压力, 气泡要么膨胀, 要么缩小, 从而增加或降低膜张力32。双层是机械可拆卸成单层的, 类似于形态研究中的冻裂技术 36,37膜, 但有了 cbb, 一个机动允许重复分离和附加周期32.小体积的电解质溶液在气泡内允许有效地融合通道重组脂质体到双层, 并获得通道记录的概率远远高于与传统的 plb 技术。小气泡体积还允许快速灌注 (在 ~ 20 毫秒内), 一旦另一个注入移液器插入到任何一个气泡。与膜片钳方法不同的是, cbb 膜一旦破裂, 立即反复重组, 移液器每天可以使用几次。通过整合膜片钳和 plb 方法的优势, cbb 提供了一个多功能的平台来改变膜的物理化学条件, 从而能够对通道膜相互作用进行前所未有的研究。

在介绍 cbb 形成过程的详细协议之前, 首先介绍了双层形成的物理化学背景, 这将有助于滤光片解决与膜形成有关的实验困难。遇到的情况。

cbb 实验提供了表面化学科学的课程38。cbb 类似于从秸秆吹到空气中的肥皂泡, 同样, 水泡也被吹到有机溶剂中。人们会注意到, 当膜脂质不包括在水泡或有机溶剂中时, 水泡几乎不会膨胀。在没有两栖脂质的情况下, 水油界面的表面张力较高, 吹泡泡的气泡内压力较高。这是拉普拉斯方程的实现 (p = 2γ/r, 其中 p 是气泡内压力, γ是表面张力, r 是气泡半径)。当有机相或电解质溶液中的脂类浓度较高时, 单层中的脂质密度会增加, 这取决于吉布斯吸附等温线 (-γ = i dμ i, 其中i是表面多余的化合物 i, 和μ i是组分 i)39的化学势, 导致表面张力降低和气泡形成的容易性。在 cbb 中, 可以从切向角度观察到双层, 单层和双层之间的接触角是可测量的。这个角度代表平衡在单层和双层的表面紧张之间 (年轻等式: γ比 = γ mocos ( ), γbi 是双层张力, γ mo 是单层紧张, 并且接触角)。接触角的变化表明双层张力的变化, 因为单层张力是根据接触角的变化作为膜电位的函数来评估的 (Young-Lippmann 方程: γ mo = cm v 2) /4 (cos (0)-cos (v)), 其中 cm是膜电容, v 是膜电位, 0 和 v分别是0和 v mv 的接触角)40,41 ,42。当两个气泡足够接近时, 它们会自发地相互接近。这是由于范德瓦尔斯的力量, 我们可以直观地观察到 cbb 形成的这一动态过程。

cbb 系统由不同的阶段组成: 即散装油相、涂有单层的水泡和接触式双层 (图 3)。这些让人想起在公共小巴中观察到的多个相, 例如在双层相周围的含溶剂圆环和由两个单层 43, 44 夹在一起的薄有机相.在 cbb 中, 单层相是连续的, 双层传单, 脂质分子很容易在单层和传单之间扩散。单层相覆盖了泡沫表面的大部分, 构成了作为脂质储层的主要相。由于单层中脂质的疏水尾向外延伸到散装油相, 双层内部或疏水岩心向散装油相打开。因此, 注入靠近双层的油相中的疏水物质能够很容易地进入双层的内部。这是我们最近开发的膜灌注技术 45, 通过这种技术, 在单通道电流记录过程中, 双层层中的脂质成分发生了快速变化 (在一秒钟内)。我们发现, 通过打开和关闭45的胆固醇灌注, 可以可逆地控制双层中的胆固醇含量.如果有关物质在单层和双层中的浓度不同, 相关物质的浓度梯度通过扩散立即溶解, 这就是所谓的马兰戈尼效应46,47. 另一方面, 单层的人字拖速度缓慢48、4950.

采用 cbb 方法, 在多种物理化学条件下形成双层, 如电解质 ph 值低至 1 51, 盐 (k+, na+) 浓度高达 3 m, 膜电位高达±400 mv, 以及一个系统。温度高达60°c。

有几个选项的形成 cbb 和通道分子在其中的加入。对于水油界面单层的形成, 在有机溶剂中加入脂质 (脂质法;图 4a, 4c)或在泡沫中作为脂质体 (脂质入法;图 4b, 4d)。值得注意的是, 脂质法允许形成15,32的非对称膜。溶于水溶液的通道分子 (例如, 通道形成肽) 直接添加到气泡中 (图 4a、b)5253, 而通道蛋白被重组为然后将其添加到气泡中 (图 4c, d)。在此, 用脂联法形成 cbb, 以获得通道肽 (多聚己酰胺 b (ptb);图 4a) 或蛋白质 (kca 钾通道,图 4c)。

研究方案

1. 制备脂质体

  1. 以所需浓度 (10 mg/ml) 在氯仿中分散磷脂 (例如粉末中的10毫克)。
  2. 蒸发氯仿。
    1. 将磷脂溶液放入圆底烧瓶中, 并将其安装在连接到n2气瓶的旋转蒸发器 (见材料表) 上。在室温下在 n2 流动下旋转烧瓶, 直到出现薄薄的磷脂膜 (~ 30分钟后)。
    2. 将打开的烧瓶放入连接到真空泵的干燥器中。使用真空泵, 吸气干燥器内部几个小时, 以彻底取出氯仿。
  3. 在烧瓶中加入适当体积的电解质溶液, 并悬浮磷脂以获得 2 mgml 磷脂悬浮液。
  4. 使用浴缸超声器 (见材料表) 将悬浮液涂成几十秒, 以获得多层囊泡 (mlv) 悬架。
  5. 对于含有离子通道蛋白的蛋白质脂质体的制备, 在 mlv 悬浮液中加入蛋白质溶液 (蛋白质使用适当的洗涤剂溶解; 2% 的体积是最大的), 并使用浴超声器进行几秒钟的超声分。

2. 准备大孔玻璃移液器

  1. 将玻璃毛细管设置在移液器拉拔器上, 并通过两步拉制用细锥形尖端制造微移液器。
  2. 将微移液器放在微炉上, 并将微移液器的尖端接触到直径为30至50μm 的锥形部分的白金长丝上。
  3. 将灯丝短暂加热 (5秒), 然后立即将其关闭。
    注: 这种操作在加热点形成裂纹, 从而切断微型移液器的尖端, 留下直径为30至50μm 的宽孔。

3. 用浅层凹井处理玻璃滑块表面 (防水表面的硅化处理)

  1. 用蒸馏水和乙醇在浅井清洁玻璃滑梯表面。
  2. 在孔滑玻璃上涂抹适当体积 (例如 100μl) 的硅化试剂 (防水剂)。
  3. 将试剂完全擦干空气中。
  4. 将玻璃滑块放在倒置显微镜的舞台上。

4. 形成 cbb 并进行电生理测量

  1. 在硅化孔滑动玻璃的浅井中加入100μl 的十六烷。
    注: 对于脂质方法, 磷脂事先分散在十六烷 (20 mg/ml) 中。
  2. 使用结核菌素注射器, 将电解质溶液的长度增加到微型移液器长度的一半。
  3. 将微型移液器设置在带有压力端口的微移液器支架上, 使 ag/agcl 电线电极浸入移液器电解液中。
  4. 将其中一个微移液器支架连接到膜片钳放大器的头部, 另一个连接到电气接地。
  5. 将微喷射器连接到微型移液器支架的压力端口。
  6. 通过操作微机械手, 将微型移液器设置到倒置显微镜舞台上方的适当位置。
  7. 调整电极偏移电位。
    1. 将用于填充微型移液器的相同电解质溶液的1μl 放在孔滑玻璃的浅井周围的平面上, 形成一个电解质圆顶。
    2. 通过操作微机械手将两个微移液器的尖端浸泡到电解质圆顶中。
    3. 调整膜片钳放大器的电极偏移电位。
    4. 通过应用高膜电位 (电击穿; 在放大器上使用 zap) 来在实验结束时确认正确的偏移量, 从而使两个气泡融合成一个 (气泡融合)。
    5. 在使用非对称电解质溶液的情况下, 纠正液体结电位54 , 以便将计算值添加到实际膜电位的应用膜电位中。
      注: 液体结电位是使用 jpcalc55程序计算的。
  8. 从尖端绘制脂质体溶液。
    注: 当使用脂质方法检测水溶性通道时, 不需要吸入脂质体溶液。
    1. 将脂质体溶液在孔滑动玻璃 (含脂质体圆顶) 的浅井周围的平面上放置1μl。
    2. 操作微机械手, 并将微型移液器的尖端插入含有脂质体的圆顶。
    3. 使用微喷射器降低微移液器支架内的压力, 从而吸引含有脂质体的溶液。
    4. 对其他移液器重复此过程。
  9. 操作微机械手, 并将微移液器的尖端浸入浅井中的十六烷。
  10. 通过增加压力慢慢地吹出水泡, 直到气泡达到所需的大小 (例如直径50微米), 并在此后保持相同的压力。
  11. 如果难以保持气泡大小的稳定, 则通过油空气界面传递气泡, 从而丢弃气泡。
  12. 重复步骤4.8 至 4.9, 直到形成稳定的气泡。
  13. 操纵气泡以允许它们之间的接触 (图 5)。
    注: 有时, 气泡会自发地相互接近, 形成 cbb。在其他情况下, 气泡是接近的, 但不相互联系。在这种情况下, 机械地互相推泡。
  14. 微调压力, 以保持气泡大小, 因为即使在恒定的气泡内压力下, 气泡大小也可能逐渐改变。
  15. 使用膜片钳放大器将膜电位设置为适当的值, 并等待通道电流出现 (图 6)。

5. 测量双层电容

  1. 通过施加坡道电位测量双层电容 (cel)。
    注: 当坡道命令中的电压变化速率为 10 mv/10 毫秒 (或 1 v/), 然后是-10 mv/10 毫秒时, 坡度变化时的电流跃迁振幅对应于读取膜的电容值 (例如:, 100 pa→100 pA)。
  2. 评估两个气泡的双层面积, 将一个气泡堆叠在另一个气泡上, 并将显微镜聚焦在双层水平上, 以查看双层的边缘 (图 6)。
    注: 双层形状大部分为圆形, 面积是根据半径计算的。
  3. 通过将电容除以双层面积 (c sp = cel/a)来计算特定的膜电容 (csp )。
  4. 用 dc计算双层厚度 (疏岩心厚度)(其中 r 和0表示双层疏水区的介电常数和介电常数真空)。

结果

典型的 cbb 直径为 50μm (图 5, 6), 十六进制膜电容为 0.65μfcm2。气泡尺寸受气泡内压力任意控制。当低噪声记录需要小气泡时, 尖端直径应相应较小。例如, 对于直径为50微米的气泡尺寸, 尖端直径应为30μm。

一旦 cbb 形成, 在水溶液或脂质体中的通道分子在几到几分钟的时间内自发地插入...

讨论

cbb 法的脂质双层形成是基于水油液滴内衬单层20的原理.从技术上讲, 形成 cbb 的程序很容易, 特别是对补丁夹具研究人员来说, 他们擅长操作玻璃微管。当两个带有微喷射器的移液器机械手可用时, 膜片就很容易使用膜片钳的电生理设置。另一方面, 由于 cbb 是传统的 plb 的接班人, 为此积累了大量的物理化学知识, 因此这一背景以及对表面化学的知识38对操作和

披露声明

提交人没有利益冲突可以披露。

致谢

提交人感谢 yamatake mariko 和 takashima masako 提供的技术援助。这项工作得到 kakenhi 赠款编号16h00759 和 17h04017 (so) 的部分支持。

材料

NameCompanyCatalog NumberComments
Azolectin (L-α-Phosphatidylcholine, Type IV-S)Sigma-AldrichP3644
A/D ConverterMolecular DivicesDigidata1550A
Ag/AgCl electrodeWarner Instruments64-1317
Bath SonicatorBransonM1800H-J
CameraHamamatsu PhotonicsC11440-10C
Glass CapillaryHarvard Apparatus30-0062
HepesDojindo342-01375
Hole SlideglassMatsunami GlassS339929
Inverted MicroscopeOlympusIX73
Isolation TableHerzTDI-86LA(Y)2
Micro InjenctorNarishigeIM-11-2
Micro ManipulatorNarishigeEMM
MicroforgeNarishigeMF-830
Micropipette holder
n-HexadecaneNacalai07819-32
Patch-Clamp AmplifierHEKAEPC800
Pipette PullerSutter Instrument Co.P-87
POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine)Avanti Polar Lipids850457
POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
)
Avanti Polar Lipids850757
POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) )Avanti Polar Lipids840457
Potassium ChlorideNacalai28514-75
Rotary EvapolatorIwakiREN-1000
Succinic AcidNacalai32402-05
Vacuum PumpBuchiV-100

参考文献

  1. Hille, B. . Ion channels of excitable membranes. , (2001).
  2. Oiki, S. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. The Journal of Physiology. 593, 2553-2573 (2015).
  3. Mueller, P., Rudin, D. O., Tien, H. T., Wescott, W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194 (4832), 979-980 (1962).
  4. Hladky, S. B., Haydon, D. A. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature. 225, 451-453 (1970).
  5. Neher, E., Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 260, 799-802 (1976).
  6. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391 (2), 85-100 (1981).
  7. Sakmann, B., Neher, E. . Single-Channel Recording. , (2009).
  8. Miller, C. . Ion Channel Reconstitution. , (1986).
  9. Wonderlin, W. F., Finkel, A., French, R. J. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophysical journal. 58 (2), 289-297 (1990).
  10. Oiki, S., Okada, Y. Planar Lipid Bilayer Method for Studying Channel Molecules. Patch Clamp Techniques. , 229-275 (2012).
  11. Kapoor, R., Kim, J. H., Ingolfson, H., Andersen, O. S., O, Preparation of Artificial Bilayers for Electrophysiology Experiments. Journal of Visualized Experiments. (20), e1033 (2008).
  12. Funakoshi, K., Suzuki, H., Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Analytical Chemistry. 78 (24), 8169-8174 (2006).
  13. Bayley, H., et al. Droplet interface bilayers. Molecular BioSystems. 4 (12), 1191-1208 (2008).
  14. Watanabe, R., Soga, N., Hara, M., Noji, H. Arrayed water-in-oil droplet bilayers for membrane transport analysis. Lab on a Chip. 16 (16), 3043-3048 (2016).
  15. Hwang, W. L., Chen, M., Cronin, B., Holden, M. A., Bayley, H. Asymmetric droplet interface bilayers. Journal of the American Chemical Society. 130 (18), 5878-5879 (2008).
  16. Tonooka, T., Sato, K., Osaki, T., Kawano, R., Takeuchi, S. Lipid bilayers on a picoliter microdroplet array for rapid fluorescence detection of membrane transport. Small (Weinheim an der Bergstrasse, Germany). 10 (16), 3275-3282 (2014).
  17. Dixit, S. S., Kim, H., Vasilyev, A., Eid, A., Faris, G. W. Light-driven formation and rupture of droplet bilayers. Langmuir. 26 (9), 6193-6200 (2010).
  18. Malmstadt, N., Nash, M. a., Purnell, R. F., Schmidt, J. J. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano letters. 6 (9), 1961-1965 (2006).
  19. Najem, J. S., et al. Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers. Journal of Visualized Experiments. (105), (2015).
  20. Oiki, S., Iwamoto, M. Channel-Membrane Interplay in Lipid Bilayer Membranes Manipulated through Monolayer Technologies. Biological & Pharmaceutical Bulletin. 41, 303-311 (2018).
  21. Andersen, O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophysical Journal. 41 (2), 119-133 (1983).
  22. Oiki, S., Danho, W., Madison, V., Montal, M. M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proceedings of the National Academy of Sciences of the United States of America. 85 (22), 8703-8707 (1988).
  23. Oiki, S., Koeppe, R. E., Andersen, O. S. Voltage-dependent gating of an asymmetric gramicidin channel. Proceedings of the National Academy of Sciences of the United States of America. 92 (6), 2121-2125 (1995).
  24. Sigworth, F. J., Urry, D. W., Prasad, K. U. Open channel noise. III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues. Biophysical Journal. 52 (6), 1055-1064 (1987).
  25. Iwamoto, M., et al. Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. The Journal of Biological Chemistry. 281 (38), 28379-28386 (2006).
  26. Iwamoto, M., Oiki, S. Amphipathic antenna of an inward rectifier K+ channel responds to changes in the inner membrane leaflet. Proceedings of the National Academy of Sciences of the United States of America. 110 (2), 749-754 (2013).
  27. Oiki, S., Koeppe, R. E., Andersen, O. S. Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue. Biophysical Journal. 66 (6), 1823-1832 (1994).
  28. Ando, H., Kuno, M., Shimizu, H., Muramatsu, I., Oiki, S. Coupled K+-water flux through the HERG potassium channel measured by an osmotic pulse method. The Journal of General Physiology. 126 (5), 529-538 (2005).
  29. Kuno, M., et al. Temperature dependence of proton permeation through a voltage-gated proton channel. The Journal of General Physiology. 134 (3), 191-205 (2009).
  30. Iwamoto, M., Oiki, S. Counting Ion and Water Molecules in a Streaming File through the Open-Filter Structure of the K Channel. The Journal of Neuroscience. 31 (34), 12180-12188 (2011).
  31. Chang, H. K., Iwamoto, M., Oiki, S., Shieh, R. C. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels. Scientific Reports. 5, (2015).
  32. Iwamoto, M., Oiki, S. Contact Bubble Bilayers with Flush Drainage. Scientific Reports. 5, 9110 (2015).
  33. Montal, M., Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proceedings of the National Academy of Sciences of the United States of America. 69 (12), 3561-3566 (1972).
  34. Petelska, A. D. Interfacial tension of bilayer lipid membranes. Central European Journal of Chemistry. 10 (1), 16-26 (2012).
  35. Benz, R., Conti, F. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport. Biophysical Journal. 50 (1), 91-98 (1986).
  36. Meryman, H. T., Kafig, E. The study of frozen specimens, ice crystals and ice crystal growth by electron microscopy. Naval Medical Research Institute, National Naval Medical Center. , (1955).
  37. Steere, R. L. Electron microscopy of structural detail in frozen biological specimens. The Journal of Biophysical and Biochemical Cytology. 3 (1), 45-60 (1957).
  38. de Gennes, P. -. G., Brochard-Wyart, F., Quére, D. . Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. , (2003).
  39. Butt, H. -. J., Kappl, M. . Surface and Interfacial Forces. , (2018).
  40. Requena, J., Haydon, D. A. The Lippmann equation and the characterization of black lipid films. Journal of Colloid and Interface Science. 51 (2), 315-327 (1975).
  41. Taylor, G. J., et al. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter. 11 (38), 7592-7605 (2015).
  42. Dixit, S. S., Pincus, A., Guo, B., Faris, G. W. Droplet shape analysis and permeability studies in droplet lipid bilayers. Langmuir. 28 (19), 7442-7451 (2012).
  43. White, S. H. Analysis of the torus surrounding planar lipid bilayer membranes. Biophysical Journal. 12 (4), 432-445 (1972).
  44. White, S. H., Miller, C. The physical nature of planar bilayer membranes. Ion Channel Reconstitution. , 3-35 (1986).
  45. Iwamoto, M., Oiki, S. Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer. Scientific Reports. 7 (1), 6857 (2017).
  46. Velarde, M. G., Zeytounian, R. K., et al. . Interfacial phenomena and the Marangoni effect. , (2002).
  47. Ryazantsev, Y. S., et al. Thermo- and soluto-capillarity: Passive and active drops. Advances in Colloid and Interface Science. 247, 52-80 (2017).
  48. Kornberg, R. D., Mcconnell, H. M. Inside-Outside Transitions of Phospholipids in Vesicle Membranes. Biochemistry. 10 (7), 1111-1120 (1971).
  49. Wimley, W. C., Thompson, T. E. Exchange and Flip-Flop of Dimyristoylphosphatidylcholine in Liquid-Crystalline, Gel, and Two-Component, Two-Phase Large Unilamellar Vesicles. Biochemistry. 29 (5), 1296-1303 (1990).
  50. Nakao, H., et al. pH-dependent promotion of phospholipid flip-flop by the KcsA potassium channel. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1848 (1), 145-150 (2015).
  51. Matsuki, Y., et al. Rectified Proton Grotthuss Conduction Across a Long Water-Wire in the Test Nanotube of the Polytheonamide B Channel. Journal of the American Chemical Society. 138 (12), 4168-4177 (2016).
  52. Iwamoto, M., Shimizu, H., Muramatsu, I., Oiki, S. A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS letters. 584 (18), 3995-3999 (2010).
  53. Iwamoto, M., et al. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3. Scientific Reports. 7 (1), 10782 (2017).
  54. Barry, P. H., Lynch, J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. The Journal of Membrane Biology. 121 (2), 101-117 (1991).
  55. Barry, P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. Journal of Neuroscience Methods. 51 (1), 107-116 (1994).
  56. Oiki, S., Muramatsu, I., Matsunaga, S., Fusetani, N. A channel-forming peptide toxin: polytheonamide from marine sponge (Theonella swinhoei). Nihon Yakurigaku Zasshi. 110, 195-198 (1997).
  57. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L., Miller, C. Single streptomyces lividans K(+) channels: functional asymmetries and sidedness of proton activation. The Journal of General Physiology. 114 (4), 551-560 (1999).
  58. Cortes, D. M., Perozo, E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): oligomeric stoichiometry and stability. Biochemistry. 36 (33), 10343-10352 (1997).
  59. MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., Chait, B. T. Structural Conservation in Prokaryotic and Eukaryotic Potassium Channels. Science. 280 (5360), 106-109 (1998).
  60. LeMasurier, M., Heginbotham, L., Miller, C. KcsA: it's a potassium channel. The Journal of General Physiology. 118 (3), 303-314 (2001).
  61. Iwamoto, M., Oiki, S. Constitutive boost of a K+ channel via inherent bilayer tension and a unique tension-dependent modality. Proceedings of the National Academy of Sciences of the United States of America. , (2018).
  62. Iwamoto, M., Elfaramawy, M. A., Yamatake, M., Matsuura, T., Oiki, S. Concurrent in Vitro Synthesis and Functional Detection of Nascent Activity of the KcsA Channel under a Membrane Potential. ACS Synthetic Biology. 7 (4), 1004-1011 (2018).
  63. Venkatesan, G. A., et al. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation. Langmuir. 31 (47), 12883-12893 (2016).
  64. Silvius, J. R. Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. Lipid-protein Interactions. 2, 239-281 (1982).
  65. Lindsey, H., Petersen, N. O., Chan, S. I. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochimica et Biophysica Acta (BBA) - Biomembranes. 555 (1), 147-167 (1979).
  66. Moore, J. W., Hines, M., Harris, E. M. Compensation for resistance in series with excitable membranes. Biophysical Journal. 46 (4), 507-514 (1984).
  67. Armstrong, C. M., Chow, R. H. Supercharging: a method for improving patch-clamp performance. Biophysical Journal. 52 (1), 133-136 (1987).
  68. Armstrong, C. M., Gilly, W. F. Access resistance and space clamp problems associated with whole-cell patch clamping. Methods in Enzymology. 207, 100-122 (1992).
  69. Kojima, S., Iwamoto, M., Oiki, S., Tochigi, S., Takahashi, H. Thylakoid membranes contain a non-selective channel permeable to small organic molecules. Journal of Biological Chemistry. 293 (20), 7777-7785 (2018).
  70. Winterstein, L. M., et al. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. Journal of General Physiology. 150 (4), 637-646 (2018).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

143

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。