JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在本文中,我们提出了一套实用可行的方法,用于描述RAF家族激酶与疾病相关的突变体,包括体外激酶测定、RAF共活化测定和补充裂化荧光酶测定。

摘要

迅速加速的纤维肉瘤(RAF)家族激酶在细胞生物学中起着核心作用,其功能障碍导致癌症和发育障碍。与疾病相关的RAF突变体的特征将帮助我们选择适当的治疗策略来治疗这些疾病。最近的研究表明,RAF家族激酶具有催化和脱硫活性,受二聚体化的严格调节。在这里,我们构建了一套实用可行的方法,以确定RAF家族激酶及其突变体的催化和碱性活动以及相对二聚体亲和力/稳定性。首先,我们修正了经典的体外激酶测定,通过降低缓冲液中的洗涤剂浓度,采用温和的快速洗涤程序,并采用谷胱甘肽S-转移酶(GST)融合,以防止RAF二聚物在净化。这使我们能够适当地测量组织活性RAF突变体的催化活性。其次,我们开发了一种新型的RAF共激活测定法,通过使用N端截断的RAF蛋白来评估激酶死原体突变体的机分活性,消除了当前协议中活性Ras的需求,从而实现了更高的灵敏度。最后,我们生成了独特的互补裂化荧光素酶测定法,定量测量了各种RAF突变体的相对二聚体亲和力/稳定性,与传统共免疫沉淀测定相比,它更可靠、更灵敏。总之,这些方法具有以下优点:(1) 用户友好;(二)无先进设备,能够有效进行;(3) 性价比高;(4) 高度敏感且可重复。

引言

RAF家族激酶是RAS/RAF/MEK/ERK信号级联的关键组成部分,它传输来自RAS的信号来激活线粒体激活蛋白激酶(MEK)1、2、3、4。这个家族激酶在细胞生长、存活和分化中起着至关重要的作用,它们的改变诱发了许多疾病,特别是癌症5,6,7,8。最近,基因组测序已经发现许多与疾病有关的RAF突变体在RAS/RAF/MEK/ERK级联9、10、11的信号传输中表现出不同的特性。仔细描述RAF突变体将有助于我们了解RAF突变体如何改变RAS/RAF/MEK/ERK级联的信号输出的分子机制,最终选择适当的方法来治疗各种RAF突变体驱动的疾病。

皇家空军家族激酶包括三个成员,CRAF,BRAF和ARAF,它们具有相似的分子结构,但激活下游信号1,2,3,4的能力不同。在这些参数中,BRAF 因其构成性磷酸化 NtA (N-t erminal acidic) 主题12、13、14 而 ARAF 具有最低的活性活动产生于其非规范的APE主题15。这可能解释不同突变频率的皇家空军参数在疾病:BRAF>CRAF>ARAF。此外,在同一个 RAF 参数中,不同站点的突变可能会以不同的方式触发下游信号,这为 RAF 家族激酶的调节增加了另一层复杂性。最近的研究表明,所有皇家空军激酶都有催化和阿尔波斯特活动13,14,16,17,18。组织活性RAF突变体通过磷化MEK直接打开下游信号,而激酶死RAF突变体可以通过侧对侧二聚变并激活MEK-ERK信号16转动其野生型对等体 ,19,20.二角亲和力/稳定性是一个关键参数,它不仅决定激酶死RAF突变体的碱性活性,而且影响构成活性RAF突变体的催化活性15,2122.具有高二聚体亲和力/稳定性的激酶死原生突变体可以直接将内源性野生型RAF转动15,而那些具有中间二聚体亲和力/稳定性的突变体需要主动Ras或高度的野生型RAF分子功能13,15,20,21,23。同样,构成活性RAF突变体以二分位依赖方式磷化MEK,而那些具有低二分位亲和力/稳定性的突变体在免疫沉淀后失去其在体外催化活性,而免疫沉淀打破了弱的RAF二聚体15, 21,22.二聚体亲和力/稳定性也决定了RAF突变体对其抑制剂的敏感性,并与RAF抑制剂24的抗性呈正相关。因此,为了描述与疾病相关的RAF突变体,有必要测量其催化和碱化活性,以及二角体亲和力/稳定性。

近年来,我们的实验室和其他实验室已经开发出各种方法来表征皇家空军家族激酶及其突变体。根据我们的实验室和其他年的经验,我们认为以下三种检测在定义与疾病相关的RAF突变体方面具有优势:(1)易于检测组织催化活性的体外激酶测定活性RAF突变体15;(2)RAF联合激活测定,这是一个可靠和方便的方法,以测量激酶死亡的RAF突变体13,15,21,22,23的活性。25;(3) 与传统的共免疫沉淀测定相比,在测量RAF突变体的相对二聚位亲和/稳定性方面具有更高灵敏度的免费裂化荧光酶测定,并且能够在没有先进设备的情况下进行。与定量分析方法如SPR(S尿面P拉斯蒙Resonance)分析15,22。结合这三种检测,我们可以很容易地了解与疾病相关的RAF突变体如何改变下游信号,从而利用适当的治疗策略来治疗由此RAF突变引起的疾病。

研究方案

1. 用于测量 RAF 突变体催化活性的 Vitro 激酶测定

  1. 使用吉布森组装或传统的分子克隆方法,在C-总站用FLAG(DYKDDDDK)标记构建用RAF突变体编码的载体(图1A)。
    1. 通过 PCR 将 FLAG 标记和突变引入 RAF 编码序列,然后使用吉布森组件或 T4 DNA 结扎并遵循制造商的协议,将整个序列插入 pCDNA3.1(+) 载体中。对PCR反应使用以下条件:(1) 95 °C,2分钟;(2) 95 °C, 30 s;(3) 59 °C, 30 s;(4) 68 °C, 3 分钟;(5) 20 个周期(2 到 4 个);(6) 4 °C 保持。
      注:用于克隆的PCR引基器:5- AAAATATACACATATATATGGAGACC-3和5-CAGCGGAACGGCCCTTA-3。
    2. 在 RAF 突变编码序列的上游插入 GST 编码序列,以便使用步骤 1.1.1 中所述的相同方法生成编码 GST 融合 RAF 突变体的矢量。
    3. 在转染前通过DNA测序验证所有载体。
  2. 在转染前一天,在6孔板中的板293T细胞,密度为5 x 105细胞/孔。当细胞密度在第二天达到80~90%汇合时,通过编码FLAG标记的RAF激酶或其突变体,通过遵循制造转染试剂(材料表)的协议,将载体转染成细胞,从步骤1.1到细胞中。
  3. 转染后24小时更换培养基。
  4. 转染后48小时吸气培养基,并加入400μL/井的易莱缓冲液(25 mM Tris*HCl, 150 mM NaCl, 1 mM 乙烯二甲酸 (EDTA), 0.25% NP-40, pH 7.2) 补充蛋白酶和磷酸酶抑制剂,以裂解冰上细胞.
    注:利地缓冲液中NP-40的浓度对于检测具有中度二聚体亲和力/稳定性的RAF突变体的催化活性至关重要。高浓度的洗涤剂或强洗涤剂在分解缓冲液中可能会破坏RAF二聚体,从而杀死RAF激酶或其突变体的催化活性。
  5. 将细胞分解转移到1.5 mL管中,在4°C下旋转12,000 x g10分钟,以耗尽细胞碎片。
  6. 将清洁全细胞解液量的每个样品转移300μL至1.5 mL管,每样品加入20μL的抗FLAG亲和珠,并在冷室(4°C)中旋转1小时。还要将每个清洁全细胞酸化酶的样品取至40μL,以检测免疫突变体的表达和活性(磷-ERK1/2),如下所述。
  7. 用解酶缓冲液清洗抗FLAG珠一次,然后用激酶反应缓冲液(20 mM HEPES,10 mM MgCl2,0.5 mM Na3VO4, 0.5 mM DTT, pH 7.2),加入20 μL的激酶反应混合物(2μg MEK1(K97A)和100 μM ATP在20 μL的kinas每个示例的操作缓冲区)。
    注:珠子清洗应轻柔快速完成,在加入激酶反应混合物之前,应完全吸气剩余的缓冲液,在冷室4°C下进行此步骤的所有操作。
  8. 在室温(25°C)下孵育激酶反应10分钟,并在孵育过程中每隔一分钟用手指翻转含有激酶反应的管。
  9. 添加 5 μL 的 5x SDS 样品缓冲液(375 mM Tris*HCl,9%硫酸钠(SDS),50%甘油,0.03%溴酚蓝),每个样品停止激酶反应,然后在90°C加热样品5分钟。
  10. 用0.1%SDS运行9~12%聚丙烯酰胺凝胶电泳(PAGE)样品,将蛋白质转移到硝化纤维素膜,并通过免疫波液检测样品中的磷-MEK和RAF突变体水平。
    注:磷-MEK也可以量化使用+32P-ATP合并。简单地说,将10μM=32P-ATP添加到激酶反应缓冲液中,然后使用标准自辐射学、磷成像或液体闪烁计数技术,在PAGE分离后量化磷酸化MEK的量。适当。

2. 皇家空军联合激活评估激酶死亡皇家空军突变体的阿尔罗斯特活动测定

  1. 构造对 RAF 接收器(CRAF 激酶域具有不可磷化 NtA 图案、AAFF)或激酶死 RAF 活化器(具有磷酸化-模拟 NtA 图案、SSDD、DDEE 或 DGEE 的 RAF 激酶域)的载体(图 1 A)(图 1A)步骤 1.1 中所述。
  2. 转染293T细胞与两个向量编码RAF接收器和激酶死RAF激活器或单个载体编码蛋白质之一,如步骤1.2和1.3所述。
  3. 转染后24小时更换培养基,在48小时收获293T转染剂,按照步骤1.4和1.5所述制备整个细胞易食物。
  4. 在室温(25°C)下快速将清洁的全细胞液化液与5x SDS样品缓冲液混合,然后在90°C下煮5分钟。
  5. 用0.1%SDS在9~12%PAGE中运行煮熟的全细胞酸洗样品,将蛋白质转移到硝化纤维素膜,检测磷-ERK1/2水平,并通过免疫液控制蛋白质。

3. 用于测量 RAF Mutants 的相对二聚位器亲和力/稳定性的免费拆分 Luciferase 测定

  1. 构造载体编码 FLAG 标记的 RAF 突变体融合到 Nluc 的 N 端(萤火虫荧光素酶的 N 端,aa2-416) 或 C-C-总站(萤火虫荧光素酶的 C 端,aa398-550),如步骤 1.1 所述。
  2. 转染293T细胞与一对载体编码不同的Nluc-RAF突变体和Cluc-RAF突变体,如步骤1.2所述。
  3. 在转染后24小时,用无色介质(即无苯酚红的DMEM)将293T细胞转染剂重新板入Krystal黑色图像板,其细胞密度为每孔2x105。
  4. 24小时后,将D-荧光素(0.2mg/mL)加入293T细胞转染剂中,孵育30分钟,并使用多检测系统(材料表)测量荧光素酶信号。
  5. 测量荧光素酶信号后,用莱沙缓冲液吸出介质和莱塞293T转染剂,以制备步骤1.4和1.5中所述的整个细胞莱沙。
  6. 使用 0.1% SDS 在 9~12% PAGE 中运行整个细胞解液样本,并通过抗 FLAG 免疫球检测 Nluc-RAF 突变体的表达水平,如步骤 2.5 所述。293T转染剂中的Nluc-RAF突变体和Cluc-RAF突变体的相对表达水平通过使用其免疫体中的图像J进行量化。
  7. 根据Nluc-RAF突变体的表达水平,使293T细胞转染剂的荧光素酶信号正常化。简单地说,这是通过将原始荧光素酶信号除以步骤 3.6 中 Nluc-RAF 突变体和 Cluc-RAF 突变体的相对表达水平来实现的。

结果

皇家空军家族激酶具有催化和异体活动,这使得其与疾病有关的突变体能够通过不同的机制打开下游信号13、14、16、17 ,18.构成活性的RAF突变体直接磷化其基质,而激酶死RAF突变体通过转活野生型对等体实现其功能。如图1B所示,两种构成活性 RA...

讨论

在本文中,我们提出了三种描述与疾病相关的RAF突变体的特征的方法,包括体外激酶测定、RAF共激活测定和免费裂化荧光酶测定。由于RAF激酶具有催化活性和铀活性,各种RAF突变体可以通过两个不同的机制13、14、16、17激活下游信号。18.构成活性RAF突变体直接磷化下游效应器MEK,?...

披露声明

提交人宣称,他们没有相互竞争的经济利益。

致谢

作者感谢毛细胞白血病奖学金对袁继明的支持。这项工作得到了亚洲基金癌症研究(AFCR2017/2019-JH)、杜克-新加坡国立大学Khoo桥资助奖(杜克-NUS-KBrFA/2018/0014)、NCCRF桥接赠款(NCCRF-YR2018-JUL-BG4)、NCCRF试点赠款(NCCRF-YR2017-JUL-PG3)和SHF学术资助。研究补助金(AM/TP011/2018)。

材料

NameCompanyCatalog NumberComments
anti-phosphoERK1/2Cell Signaling Technologies4370
anti-phosphoMEK1/2Cell Signaling Technologies9154
anti-ERK1/2AB clonalA0229
anti-MEK1/2Cell Signaling Technologies9124
anti-FLAG(mouse)Sigma-AldrichF3165
anti-HANovus BiologicalsMAB6875
anti-FLAG(Rabbit)Cell Signaling Technologies14793
anti-β-actinSigma-AldrichA2228
anti-FLAG beads(M2)Sigma-AldrichA4596
HRP-conjugated anti-mouse IgGJackson Laboratories115-035-003
HRP-conjugated anti-Rabbit IgGJackson Laboratories111-035-144
pcDNA3.1(+)In vitrogenV79020
Gibson Assembly Cloning  KitNew England BiolabsE5510
T4 DNA ligaseNew England BiolabsM0202
Lipofectamine 2000Invitrogen11668019
Fugene 6Roche11 814 443 001
DMEM w/o phenol redInvitrogen21063-029
D-luciferin GoldBioLUCK-100
6xhis-tagged MEK1 (K97A) prepared in our previous studiesN.A.Reference 15.
GloMax-Multi Detection System.PromegaE7041

参考文献

  1. Chong, H., Vikis, H. G., Guan, K. L. Mechanisms of regulating the Raf kinase family. Cellular Signalling. 15 (5), 463-469 (2003).
  2. Wellbrock, C., Karasarides, M., Marais, R. The RAF proteins take center stage. Nature Reviews Molecular Cell Biology. 5 (11), 875-885 (2004).
  3. Baccarini, M. Second nature: biological functions of the Raf-1 "kinase". FEBS Letter. 579 (15), 3271-3277 (2005).
  4. Lavioe, H., Therrien, M. Regulation of RAF protein kinases in ERK signaling. Nature Reviews Molecular Cell Biology. 16 (5), 281-298 (2015).
  5. Schreck, R., Rapp, U. R. Raf kinases: oncogenesis and drug discovery. International Journal of Cancer. 119 (10), 2261-2271 (2006).
  6. Roberts, P. J., Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26 (22), 3291-3310 (2007).
  7. McCubrey, J. A., et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochemistry Biophysics Acta. 1773 (8), 1263-1284 (2007).
  8. Schubbert, S., Shannon, K., Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer. 7 (4), 295-308 (2007).
  9. Davies, H., et al. Mutations of the BRAF gene in human cancer. Nature. 417 (6892), 949-954 (2002).
  10. Garnett, M. J., Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 6 (4), 313-319 (2004).
  11. Pandit, B., et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics. 39 (8), 1007-1012 (2007).
  12. Mason, C. S., Springer, C. J., Cooper, R. G., Superti-Furga, G., Marshall, C. J., Marais, R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO Journal. 18 (8), 2137-2148 (1999).
  13. Hu, J., et al. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell. 154 (5), 1036-1046 (2013).
  14. Desideri, E., Cavallo, A. L., Baccarini, M. Alike but different: RAF paralogs and their signaling outputs. Cell. 161 (5), 967-970 (2015).
  15. Yuan, J., et al. The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants. Oncogene. 37 (43), 5719-5734 (2018).
  16. Wan, P. T., et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 116 (6), 855-867 (2004).
  17. Shaw, A. S., Kornev, A. P., Hu, J., Ahuja, L. G., Taylor, S. S. Kinases and pseudokinases: lessons from RAF. Molecular and Cellular Biology. 34 (9), 1538-1546 (2014).
  18. Taylor, S. S., Shaw, A. S., Hu, J., Meharena, H. S., Kornev, A. P. Pseudokinases from a structural perspective. Biochemistry Society Transactions. 41 (4), 981-986 (2013).
  19. Rajakulendran, T., Sahmi, M., Lefrançois, M., Sicheri, F., Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature. 461 (7263), 542-545 (2009).
  20. Heidorn, S. J., et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 140 (2), 209-221 (2010).
  21. Yuan, J., et al. Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis. Science Signaling. 11 (554), 6795 (2018).
  22. Yuan, J., et al. The AMPK inhibitor overcomes the paradoxical effect of RAF inhibitors through blocking phospho-Ser-621 in the C terminus of CRAF. Journal of Biological Chemistry. 293 (37), 14276-14284 (2018).
  23. Hu, J., et al. Kinase regulation by hydrophobic spine assembly in cancer. Molecular and Cellular Biology. 35 (1), 264-276 (2015).
  24. Poulikakos, P., et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 480 (7377), 387-390 (2011).
  25. Hu, J., et al. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proceedings of the National Academy of Sciences of the United States of America. 108 (15), 6067-6072 (2011).
  26. Taylor, S. S., Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochemistry Sciences. 36 (2), 65-77 (2011).
  27. Farrar, M. A., Alberol-Ila, J., Perlmutter, R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature. 383 (6596), 178-181 (1996).
  28. Luo, Z., Tzivion, G., Belshaw, P. J., Vavvas, D., Marshall, M., Avruch, J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature. 383 (6596), 181-185 (1996).
  29. Weber, C. K., Slupsky, J. R., Kalmes, H. A., Rapp, U. R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Research. 61 (9), 3595-3598 (2001).
  30. Garnett, M. J., Rana, S., Paterson, H., Barford, D., Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Molecular Cell. 20 (6), 963-969 (2005).
  31. Hatzivassiliou, G., et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 464 (7287), 431-435 (2010).
  32. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M., Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 464 (7287), 427-430 (2010).
  33. Kolch, W. Meaningful relationships: the regulation of the Ras/RAF/MEK/ERK pathway by protein interactions. Biochemistry Journal. 351, 289-305 (2000).
  34. Cseh, B., Doma, E., Baccarini, M. "RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Letters. 588 (15), 2398-2406 (2014).
  35. García-Gómez, R., Bustelo, X. R., Crespo, P. Protein-Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends Cancer. 4 (9), 616-633 (2018).
  36. Luker, K. E., Smith, M. C., Luker, G. D., Gammon, S. T., Piwnica-Worms, H., Piwnica-Worms, D. Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proceedings of the National Academy of Sciences of the United States of America. 101 (33), 12288-12293 (2004).
  37. Chen, S. H., et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discovery. 6 (3), 300-315 (2016).
  38. Foster, S. A., et al. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell. 29 (4), 477-493 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

149RAFRAFRas RAF MEK ERKRAF

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。