JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该协议描述了由念珠菌和链球菌组成的跨王国生物膜的培养,并提出了一种基于共焦点显微镜的方法,用于监测这些生物膜内的细胞外pH值。

摘要

由真菌和细菌细胞组成的跨王国生物膜涉及各种口腔疾病,如内膜感染、牙周炎、粘膜感染,以及最值得注意的是儿童早期幼细胞。在所有这些条件下,生物膜基质中的pH影响微生物-宿主相互作用,从而影响疾病进展。本协议描述了一种基于共聚焦显微镜的方法,用于监测包括念珠菌和球菌在内的跨王国生物膜内的pH动力学。利用pH依赖双发射光谱和比例探头C-SNARF-4的染色特性,确定生物膜细胞外区域pH的下降。在探头中使用 pH 比度测量需要仔细选择成像参数、彻底校准染料以及仔细、基于阈值的图像数据后处理。正确使用后,该技术可在生物膜的不同区域快速评估细胞外 pH 值,从而监测水平和垂直 pH 梯度随时间推后。虽然共聚焦显微镜的使用将Z型探型限制在75μm或以下的薄生物膜,但pH比度测定法的使用非常适合对跨王国生物膜中一个重要的毒力因子进行非侵入性研究。

引言

包括真菌和细菌物种的跨王国生物膜涉及口腔中的多种病理条件。念珠菌经常从内淋病感染1和牙周病变2,3分离。在粘膜感染中,米炎组链球菌物种已被证明能增强真菌生物膜的形成、组织入侵,并在体外和小鼠模型4、5、6、7中传播。最有趣的是,坎迪达spp的口服运输已被证明与儿童8的卡英的流行有关。如啮齿动物模型所示,粘膜链球菌坎迪塔斯白化病之间的共生关系增加了细胞外多糖的产生,并导致形成更厚、更结血的生物膜9,10。

在上述所有条件下,特别是幼儿期,生物膜pH对疾病进展非常重要,生物膜基质在酸原微环境的发展中发挥突出作用11要求采用各种方法,允许研究跨王国生物膜内的pH变化。已开发出简单、准确的基于共聚焦显微镜的方法,用于监测细菌12和真菌13生物膜内的pH。通过比例染料C-SNARF-4和基于阈值的图像后处理,可以在生物膜14的所有三个维度中实时确定细胞外pH值。与生物膜中基于显微镜的pH监测技术相比,pH与C-SNARF-4的比值测量简单而便宜,因为它不需要合成颗粒或化合物,包括参考染料15或使用双光子激发16。仅使用一种染料可以防止探针条块分割、荧光透流和选择性漂白16、17、18的问题,同时仍然允许对细胞内和细胞外pH的可靠区分。最后,在生物膜生长后使用染料进行孵育,从而可以研究实验室和原位生长的生物膜。

本研究的目的是扩大pH比度测定的使用,并提供一种研究跨王国生物膜pH变化的方法。作为概念的证明,该方法用于监测暴露于葡萄糖的双种生物膜中的pH。

研究方案

奥胡斯县道德委员会(M-20100032)审查并批准了唾液收集协议。

1. 跨王国生物膜的培育

  1. 在有氧条件下,在37°C的血琼脂板上生长S.mutans DSM 20523和C.白化菌NCPF 3179。
  2. 将每个生物体的单个菌落转移到充满5 mL脑心脏输液(BHI)的试管中。在37°C的有氧条件下生长18小时。
  3. 在1,200 x g下将过夜培养物离心5分钟。丢弃上清液,将细胞重新悬浮在生理盐水中,并将OD550 nm调整为0.5,用于C.白化(+10 7细胞/mL)和S.mutans(+10 8细胞/mL)。用无菌生理盐水(+107细胞/mL)稀释S.mutans悬浮液1:10。
  4. 移液器50μL的无菌唾液溶液,根据de Jong等人19号的方法制备,放入光学底部96孔板的孔中进行显微镜。在37°C下孵育30分钟。用100μL无菌生理盐水清洗水井3倍。清空水井。
  5. 在每个井中加入100 μL的C.白化剂悬浮液。在37°C孵育90分钟。用无菌生理盐水洗涤3x。
    注意:在清洗过程中不要完全清空水井。离开 20 μL 的储液罐,以避免剪切力过大。
  6. 在每个井中加入100 μL的热灭活胎儿牛血清(在56°C处灭活30分钟)。在37°C孵育2小时,用无菌生理盐水洗3次。清空井,留下 20 μL 的储液罐。
  7. 在每个井中加入 100 μL 的S. mutans悬架(在步骤 1.3 中准备)。加入含有5%蔗糖的150μLBHI。在 37°C 孵育 24 小时或更长时间。培养较老的生物膜时,每天将培养的培养基片改为新鲜的BHI。在跨王国生物膜生长阶段结束时,用无菌生理盐水清洗5x。

2. 比例 pH 成像

注:生物膜生长完成后,需立即进行比例pH成像。

  1. 对于比例pH成像,使用带63x油或水浸透镜的倒式共聚焦激光扫描显微镜、543nm激光线和光谱成像系统(即META探测器),以便对重叠的荧光信号进行成像。使用培养箱将显微镜级加热至 35°C。
  2. 设置检测器以确保从 576–608 nm 检测绿色荧光,同时检测 629–661 nm 的红色荧光。选择适当的激光功率和增益,以避免过度曝光和曝光不足。
    注: 图像的曝光最好在带有假着色的调色板图像中看到。
  3. 将针孔大小设置为 1 Airy 单位或光学切片 ±0.8 μm。将图像大小设置为 512 x 512 像素,扫描速度设置为 2。使用均值选项选择平均线 2。
    注:在一系列实验开始时,检查所选显微镜设置在细菌细胞、真菌细胞壁、生物膜基质和真菌细胞质之间提供清晰的对比。
  4. 制备含有0.4%(w/v)葡萄糖的无菌生理盐水100μL,至pH7。制备C-SNARF-4(二甲基亚硫酸盐1 mM)的库存溶液。将染料添加到 30 μM 的最终浓度。
    注意:处理比例染料时,请戴上硝化手套。
  5. 用跨王国的生物膜清空其中一口井,留下20μL的储液罐。加入含有葡萄糖的无菌盐水和比例染料。将 96 孔板放在显微镜台上,开始对生物膜进行成像。
  6. 在生物膜的不同位置获取单个图像或 Z 堆栈。在显微镜软件中标记 X-Y 位置,以跟踪特定视场随时间的变化。每隔一段时间,在激光关闭时拍摄图像,以校正探测器的偏移。
  7. 重复步骤2.4_2.6,分析生长在不同井中的每个生物膜。

3. 比例染料的校准

注: 染料的校准和校准曲线的拟合可以在与比例测量 pH 成像不同的当天进行。

  1. 在35°C下,以0.2 pH单位的步骤制备一系列50mM 2-二型硫酸(MES)缓冲液,其分量为pH 4.0±7.8。将每个缓冲液溶液的移液器 150 μL 放入光学底 96 孔板的孔中,用于显微镜。
  2. 将染料添加到 96 孔板的缓冲填充孔中,最终浓度为 30 μM。让平衡5分钟。
  3. 将显微镜级加热至 35°C。选择与比例 pH 成像相同的显微镜设置。将 96 孔板放在显微镜台上。专注于井底。获取两个图像(绿色和红色通道)的所有缓冲液溶液,井底上方 5 μm。每隔一段时间,在激光关闭时拍摄图像,以校正探测器的偏移。
  4. 以三次执行校准实验。
  5. 将所有图像导出为 TIF 文件。将它们导入专用图像分析软件(即 ImageJ20)。单击"过程" 从缓冲液解决方案的相应图像中减去激光关闭时拍摄的图像 |图像计算器 |减去)。
    注: 如有必要,使用Image |裁剪.
  6. 通过红色通道图像划分绿色通道图像,并通过单击"分析" 来计算结果图像中的平均荧光强度直方图
  7. 从三元实验中,绘制平均绿色/红色比与pH值。使用专用软件将功能适合校准数据(即 MyCurveFit)。

4. 数字图像分析

注:在校准染料和比例pH成像后,可在任何时间点执行数字图像分析。

  1. 将绿色和红色通道生物膜图像存储在单独的文件夹中,并重命名两个系列文件,并带有序号(例如,GREEN_0001)。将图像导入专用图像分析软件(即 ImageJ)。单击分析|直方图,用于确定使用激光关闭拍摄的图像中的平均荧光强度,并通过单击"过程" 从生物膜图像中减去值 |数学|减去
  2. 将 2 个图像系列导入专用图像分析软件(即 daime21)。对红色通道图像执行基于阈值的分割(|自动分段|自定义阈值)。将"低"阈值设置为高于真菌细胞质的荧光强度和低于真菌细胞壁和细菌强度的"高"阈值。
    注:选择适当的阈值后,只有细胞外区域被识别为对象。
  3. 将分段图像系列的对象图层传输到绿色通道图像系列。为此,请单击"段" |传输对象层
    注:如果细胞外区域和真菌细胞质在单个颜色通道中的对比度太弱,则在分割之前通过单击"编辑|图像计算器|添加.执行 4.2 下所述的分割,并将分段图像系列的对象图层传输到绿色和红色通道图像系列。
  4. 使用对象编辑器删除红色和绿色通道图像系列中的非对象像素(可视化工具|对象编辑器|在所有图像 |删除非对象像素)。现在,生物膜图像从细菌细胞和真菌细胞中清除。将处理过的图像系列导出为 TIF 文件。
  5. 将两个图像系列导入 ImageJ。ImageJ 为所有非对象像素分配强度 0。通过将红色图像系列 (R1) 自行划分来删除这些像素 (进程|图像计算器|图 1: R1;操作:除分;图像 2: R1),并将生成的图像系列 (R2) 与原始红色图像系列(Process =图像计算器|图 1: R1;操作:乘法;图 2:R2。创建第三个图像系列 (R3), 与 R1 相同,但 NaN 分配给 R1 中强度为 0 的所有像素。以相同的方式继续使用绿色图像系列。
  6. 使用"Mean"过滤器(过程|过滤器|平均|半径|1 像素)红色和绿色通道图像系列,以补偿探测器噪声。将绿色通道图像系列除以红色通道图像系列 (进程|图像计算器|图片1:G3;操作:除分;图 2:R3。生成的图像系列 (G3/R3) 显示所有对象像素的绿色/红色比例。
  7. 计算每个图像的平均比率(分析|直方图)。应用假着色,以更好地直观地表示图像中的比例(图像|查找表)。使用 3.6 下拟合的功能将绿色/红色比率转换为 pH 值。

结果

24小时和48小时后,在井板中开发出了强大的跨王国生物膜。C. 白化菌表现出不同程度的丝状生长,而S.mutans在高度形成高达35μm的密集簇。单细胞和S.mutan的链群在真菌的hyphae周围,和较大的细胞间空间表明存在一个大量的矩阵(图S1)。

比例染料的校准产生不对称的sigmoidal曲线13,14。在接触葡萄糖?...

讨论

涉及白化病和链球菌的跨王国生物膜的培养方案,在之前已经描述了9,22,23,24,25。然而,目前的设置侧重于简单的生长条件,与正常工作日兼容的时间表,平衡的物种组成,以及开发大量的生物膜基质。此外,96孔板涂有唾液溶液,在一定程度上模拟...

披露声明

作者没有什么可透露的。

致谢

阿内特·阿克尔·汤姆森和哈维尔·加西亚因出色的技术支持而得到认可。作者感谢鲁本斯·斯宾-内托对图像分析进行了富有成果的讨论。

材料

NameCompanyCatalog NumberComments
Blood agar platesStatens Serum Institut677
Brain heart infusionOxoidCM1135
Brain heart infusion + 5 % sucroseBDH laboratory supplies10274
Candida albicansNational Collection of Pathogenic FungiNCPF 3179
D-(+)-GlucoseSigma-AldrichG8270
daime: digital image analysis in microbial ecologyUniversität WienN/AFreeware; V2.1; https://dome.csb.univie.ac.at/daime
Dimethyl sulfoxideLife TechnologiesD12345
Fetal bovine serumGibco Life technologies10270
GS-6R refrigerated centrifugeBeckmanN/A
ImageJNational Institutes of HealthN/AFreeware; V1.46r; https://imagej.nih.gov/ij
JavaOracleN/AFreeware necessary to run ImageJ; V8.0; https://java.com/en/download
µ-Plate 96 Well BlackIbidi89626
MyCurveFitMyAssays Ltd.N/A
2-(N-Morpholino)ethanesulfonic acid (MES) bufferBioworld700728
PHM210 pH-meterRadiometer Analytical
Plan-Apochromat 63x oil immersion objectiveZeissN/ANA=1.4
SNARF®-4F 5-(and-6)-Carboxylic AcidLife TechnologiesS23920
Sterile physiological salineVWR6404
Streptococcus mutansDeutsche Sammlung von Mikroorganismen und ZellkulturenDSM 20523
Vis-spectrophotometer V-3000PCVWRN/A
XL IncubatorPeCONN/A
Zeiss LSM 510 METAZeissN/A

参考文献

  1. Siqueira, J. F., Sen, B. H. Fungi in endodontic infections. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 97 (5), 632-641 (2004).
  2. Matic Petrovic, S., et al. Subgingival areas as potential reservoirs of different Candida spp in type 2 diabetes patients and healthy subjects. PloS One. 14 (1), 0210527 (2019).
  3. De-La-Torre, J., et al. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship. Revista Iberoamericana De Micologia. 35 (3), 134-139 (2018).
  4. Xu, H., et al. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cellular Microbiology. 16 (2), 214-231 (2014).
  5. Xu, H., Sobue, T., Bertolini, M., Thompson, A., Dongari-Bagtzoglou, A. Streptococcus oralis and Candida albicans Synergistically Activate μ-Calpain to Degrade E-cadherin From Oral Epithelial Junctions. The Journal of Infectious Diseases. 214 (6), 925-934 (2016).
  6. Dongari-Bagtzoglou, A., Kashleva, H., Dwivedi, P., Diaz, P., Vasilakos, J. Characterization of mucosal Candida albicans biofilms. PloS One. 4 (11), 7967 (2009).
  7. Diaz, P. I., et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infection and Immunity. 80 (2), 620-632 (2012).
  8. Xiao, J., et al. Candida albicans and Early Childhood Caries: A Systematic Review and Meta-Analysis. Caries Research. 52 (1-2), 102-112 (2018).
  9. Falsetta, M. L., et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and Immunity. 82 (5), 1968-1981 (2014).
  10. Hwang, G., et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathogens. 13 (6), 1006407 (2017).
  11. Koo, H., Falsetta, M. L., Klein, M. I. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. Journal of Dental Research. 92 (12), 1065-1073 (2013).
  12. Schlafer, S., Dige, I. Ratiometric Imaging of Extracellular pH in Dental Biofilms. Journal of Visualized Experiments. (109), 53622 (2016).
  13. Schlafer, S., Kamp, A., Garcia, J. E. A confocal microscopy-based method to monitor extracellular pH in fungal biofilms. FEMS Yeast Research. 18 (5), (2018).
  14. Schlafer, S., Bælum, V., Dige, I. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions. Journal of Microbiological Methods. 152, 194-200 (2018).
  15. Hidalgo, G., et al. Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Applied and Environmental Microbiology. 75 (23), 7426-7435 (2009).
  16. Vroom, J. M., et al. Depth Penetration and Detection of pH Gradients in Biofilms by Two-Photon Excitation Microscopy. Applied and Environmental Microbiology. 65, 3502-3511 (1999).
  17. Lawrence, J. R., Swerhone, G. D. W., Kuhlicke, U., Neu, T. R. In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies. FEMS Microbiology Ecology. 92 (11), (2016).
  18. Franks, A. E., et al. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environmental Science. 2 (1), 113-119 (2009).
  19. de Jong, M. H., van der Hoeven, J. S., van OS, J. H., Olijve, J. H. Growth of oral Streptococcus species and Actinomyces viscosus in human saliva. Applied and Environmental Microbiology. 47 (5), 901-904 (1984).
  20. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  21. Daims, H., Lücker, S., Wagner, M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environmental Microbiology. 8 (2), 200-213 (2006).
  22. Barbosa, J. O., et al. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans. PloS One. 11 (3), 0150457 (2016).
  23. Thein, Z. M., Samaranayake, Y. H., Samaranayake, L. P. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Archives of Oral Biology. 51 (8), 672-680 (2006).
  24. Krzyściak, W., et al. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm. Nutrients. 9 (11), 1242 (2017).
  25. Liu, S., et al. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans. BioMed Research International. 2017, 7953920 (2017).
  26. Schlafer, S., Meyer, R. L. Confocal microscopy imaging of the biofilm matrix. Journal of Microbiological Methods. 138, 50-59 (2017).
  27. Schlafer, S., et al. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4. Applied and Environmental Microbiology. 81 (4), 1267-1273 (2015).
  28. Ohle, C., et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Applied and Environmental Microbiology. 76 (7), 2326-2334 (2010).
  29. Schlafer, S., et al. pH landscapes in a novel five-species model of early dental biofilm. PloS One. 6 (9), 25299 (2011).
  30. Divaris, K., et al. The Supragingival Biofilm in Early Childhood Caries: Clinical and Laboratory Protocols and Bioinformatics Pipelines Supporting Metagenomics, Metatranscriptomics, and Metabolomics Studies of the Oral Microbiome. Methods in Molecular Biology. 1922, 525-548 (2019).
  31. Stewart, P. S. Mini review: convection around biofilms. Biofouling. 28 (2), 187-198 (2012).
  32. Stoodley, P. Biofilms: Flow disrupts communication. Nature Microbiology. 1, 15012 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

155 pH

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。