JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • Erratum Notice
  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • Erratum
  • 转载和许可

Erratum Notice

Important: There has been an erratum issued for this article. Read More ...

摘要

这里介绍的是一种方案,用于使用漫反射光学器件实时和在床边实时无创监测神经危重患者的脑血流动力学。具体而言,该协议使用混合漫反射光学系统来检测和显示有关脑氧合,脑血流和脑代谢的实时信息。

摘要

神经生理学监测是神经危重症患者治疗的一个重要目标,因为它可以预防继发性损伤并直接影响发病率和死亡率。然而,目前缺乏合适的非侵入性实时技术来连续监测床边的脑生理。弥漫光学技术已被提出作为神经危重患者床旁测量脑血流量和脑氧合的潜在工具。以前已经探索过漫反射光谱法,以监测从新生儿监测到成人脑血管介入治疗等多种临床场景的患者。然而,该技术通过在床边提供实时信息来帮助临床医生的可行性在很大程度上仍未得到解决。在这里,我们报告了漫反射光学系统的翻译,用于在重症监护期间连续实时监测脑血流量,脑氧合和脑氧代谢。该仪器的实时功能可以实现基于患者特定脑生理学的治疗策略,而不是依赖于替代指标,例如动脉血压。通过使用相对便宜和便携式的仪器在不同时间尺度上提供有关脑循环的实时信息,这种方法在低预算医院、偏远地区和开放领域(例如国防和体育)的监测中可能特别有用。

引言

导致危重神经系统患者预后不良的大多数并发症与脑血流动力学损伤引起的继发性损伤有关。因此,监测这些患者的脑生理可能直接影响发病率和死亡率1234567。然而,目前还没有成熟的临床工具用于在床边对神经危重患者的脑生理进行连续实时无创监测。在潜在的候选者中,漫反射光学技术最近被提出作为填补这一空白的有前途的工具891011通过测量来自头皮的漫射近红外光(~650-900 nm)的缓慢变化(即数十到数百毫秒),漫反射光谱(DOS)可以测量大脑中主要发色团的浓度,例如脑氧(HbO)和脱氧血红蛋白(HbR)1213。此外,可以通过量化光强度的快速波动(即从几μs到几毫秒)来测量脑血流量(CBF)101415,1617当结合时,DOS和DCS还可以提供大脑代谢率的估计值(CMRO2181920

已经探索了DOS和DCS的组合,以在几种临床前和临床情况下监测患者。例如,漫反射光学已被证明可以为危重新生儿提供相关的临床信息 21,22,23,24,包括在心脏手术期间治疗心脏缺陷 23,25,262728.此外,几位作者还探索了在不同脑血管介入治疗过程中使用漫反射光学来评估脑血流动力学,例如颈动脉内膜切除术2930、31、中风溶栓治疗32、床头操作333435心肺复苏36 和其他 373839.当连续血压监测也可用时,漫反射光学器件可用于监测健康和危重受试者的大脑自动调节11,4041,42以及评估脑循环的临界闭合压力43几位作者已经根据不同的金标准CBF测量18验证了DCS的CBF测量结果,而使用漫反射光学器件测量的CMRO2已被证明是神经关键监测的有用参数8,18,23,24,28434445.此外,先前的研究已经验证了光学衍生的脑血流动力学参数用于长期监测神经危重症患者8,91011,包括用于预测缺氧464748和缺血事件8

漫反射光学技术在纵向测量和临床干预期间提供有价值的实时信息的可靠性在很大程度上仍未得到解决。以前将独立DOS系统的使用与侵入性脑组织氧张力监测仪进行比较,并且DOS被认为没有足够的敏感性来取代侵入性监测仪。然而,除了使用相对较小的人群外,侵入性和非侵入性监测仪的直接比较可能会被误导,因为每种技术探测包含大脑脉管系统不同部分的不同体积。尽管这些研究最终得出结论,漫反射光学器件不能替代侵入性监视器,但在这两项研究中,DOS都达到了中等到良好的精度,这对于没有侵入性监视器的情况和/或地方可能足够了。

相对于其他方法,漫反射光学器件的主要优点是它能够使用便携式仪器在床边无创(连续)同时测量血流和组织血氧合。与经颅多普勒超声(TCD)相比,DCS还有一个额外的优势:它在组织水平上测量灌注,而TCD测量大脑底部大动脉的脑血流速度。在评估近端大动脉血流和软脑膜侧支均有助于灌注的狭窄闭塞性疾病时,这种区别可能尤为重要。与其他传统成像模式(如正电子发射断层扫描(PET)和磁共振成像(MRI))相比,光学技术也具有优势。除了同时提供CBF和HbO/HbR浓度的直接测量(单独使用MRI或PET无法实现)外,光学监测还提供了明显更好的时间分辨率,例如,允许评估动态脑自动调节40,4142和评估动态演变的血流动力学变化。此外,与PET和MRI相比,漫射光学仪器价格低廉且便于携带,鉴于中低收入国家血管疾病的高负担,这是一个关键优势。

这里提出的协议是对重症监护病房(ICU)的患者进行实时床边神经监测的环境。该方案使用混合光学设备以及临床友好的图形用户界面(GUI)和定制的光学传感器来探测患者(图1)。用于展示该协议的混合系统结合了来自独立模块的两个漫反射光谱:商用频域(FD-)DOS模块和自制DCS模块(图1A)。FD-DOS 模块4950 由 4 个光电倍增管 (PMT) 和 32 个以四种不同波长(690、704、750 和 850 nm)发射的激光二极管组成。DCS 模块由一个发射 785 nm 的长相干激光器、16 个作为探测器的单光子计数器和一个相关器板组成。FD-DOS模块的采样频率为10 Hz,DCS模块的最大采样频率为3 Hz。为了集成FD-DOS和DCS模块,在我们的控制软件中编程了一个微控制器,以便在每个模块之间自动切换。微控制器负责打开和关闭FD-DOS和DCS激光器,以及FD-DOS探测器,以允许对每个模块进行交错测量。总的来说,所提出的系统可以每0.5至5秒收集一个FD-DOS和DCS组合样本,具体取决于信噪比(SNR)要求(收集时间越长,SNR越好)。为了将光耦合到额头,我们开发了一种3D打印的光学探头,可以为每个患者定制(图1B),源检测器的间隔在0.8到4.0厘米之间变化。此处示例中使用的标准源检测器分离对于DCS为2.5 cm,对于FD-DOS为1.5、2.0、2.5和3.0 cm。

本研究中提出的协议的主要特征是开发了一个实时界面,既可以使用友好的GUI控制硬件,又可以在不同的时间窗口下实时显示主要的大脑生理参数(图1C)。在所提出的GUI中开发的实时分析管道速度快,计算光学参数所需的时间不到50 ms(有关更多详细信息,请参阅 补充材料 )。GUI的灵感来自神经ICU现有的临床仪器,并在将系统转换为神经ICU期间,通过临床用户的广泛反馈进行了调整。因此,实时GUI可以促进常规医院工作人员(如神经重症监护医生和护士)采用光学系统。漫反射光学作为临床研究工具的广泛采用有可能增强其监测生理上有意义的数据的能力,并最终证明漫反射光学是实时无创监测神经关键患者的良好选择。

研究方案

该协议由坎皮纳斯大学地方委员会批准(协议号56602516.2.0000.5404)。在测量之前,从患者或法定代表人那里获得了书面知情同意。我们监测了坎皮纳斯大学诊所医院收治的患者,诊断为缺血性中风或影响前循环的蛛网膜下腔出血。影响后循环的缺血性中风患者,由于颅内压升高而导致减压性颅骨切除术的患者和其他神经退行性疾病(痴呆,帕金森氏症或任何其他可能与皮质萎缩相关的疾病)的患者被排除在研究方案之外。

1. 将系统移至重症监护室之前的准备工作

  1. 将所有光纤连接到相关的激光器和检测器,并确保它们正确连接到光学探头(图1B)。
  2. 检查光学探头是否用黑布覆盖,以避免激光照射在房间内。
  3. 将系统电源开关转到"ON"位置。系统通电后,等待30秒,然后将DCS激光钥匙开关转到"ON"位置。FD-DOS激光器在系统通电时自动打开。
  4. 在准备系统时,请征得参与者或法定代表人的同意。获得同意后,将推车带到患者房间。
    注意:由于混合动力系统具有可持续使用长达 45 分钟的内置电池,因此在运输过程中无需关闭。

2. DOS系统的校准和增益设置

  1. 到达ICU后,通过将钥匙切换到"OFF"位置来关闭DCS激光器。
  2. 从标有"校准"的固体模型开始,按照以下步骤在FD-DOS软件(BOXY,ISS)上运行校准过程。
    1. 在"文件"菜单上,通过单击"加载设置文件"选项,为正在使用的探头加载相应的设置文件
    2. 将探头放在模型的弯曲侧,确保与表面良好接触,然后单击FD-DOS软件中的"优化所有探测器" 按钮来优化PMT偏置电压。
    3. 通过单击"计算波形校准"选项,运行多个源检测器分离的校准。光学道具的值。和"校准" 菜单中的多个距离"。
    4. 从"文本星期一"菜单中打开"用户定义的计算"选项,以检查测量的光学属性是否与预先指定的值(写在实体模型中)匹配,以及拟合 R2 是否接近 1。
  3. 重复上述步骤(步骤2.2.3除外)以测量标记为"检查" 的模型的光学特性,以确保校准充分。测量的光学特性应在 10% 以内与模型中指定的值匹配。
    注意:确保每次移动探头时都关闭PMT(通过单击"所有探测器关闭"按钮),以避免由于环境光的直接照明而损坏PMT。
  4. 如果校准不充分,请重新运行校准过程(步骤 2.2 和 2.3)。确保FD-DOS系统的良好校准对于FD-DOS测量的有效性至关重要。

3. 参与者在床边的准备

  1. 使用消毒湿巾清洁探头和患者额头。
  2. 将双面胶带放在探头上(图1B),确保胶带不与光纤尖端直接接触。
  3. 在主题上放置激光安全谷歌。
  4. 将探针放在感兴趣区域(ROI)上,并将松紧带缠绕在受试者的头部。虽然FD-DOS和DCS并非绝对必要,但建议用黑布或黑色绷带覆盖光学探头,以减少环境光引起的噪音。
    注意:重要的是要确保弹性带既不太紧也不太松。如果带子太紧,可能会给患者带来明显的不适,如果带子太松,可能会导致数据质量差,因为双面带的强度不足以将探头固定到位。
  5. 将探头正确固定在患者的额头上后,通过将钥匙切换到"ON"位置来打开DCS激光器。
    注意:DCS系统使用3B类激光,这对眼睛暴露是危险的。只有当探头正确连接到患者的额头上时,才打开激光非常重要。

4. 数据质量评估

  1. 在开始使用GUI获取数据之前,请在GUI的"设置" 选项卡中编写DCS源检测器分离。
    注意:DCS系统不需要校准步骤,但实时分析需要正确输入源探测器分离(详见 补充材料 )。
  2. 按GUI中的"开始" 按钮启动采集软件,并在FD-DOS软件中检查DOS信号:
    1. 单击FD-DOS软件中的"优化所有检测器" 按钮以优化PMT偏置电压。
    2. 在"文本星期一"菜单中的"用户定义计算"选项中检查光学特性和DOS拟合的R2R2系数应接近单位,根据经验,人类患者的吸收系数应在0.05和0.2cm-1范围内,而散射系数应在6和13cm-113范围内。
  3. 在GUI的"相关曲线"选项卡中检查DCS信号。
    1. 通过将开关转到"ON" 位置来打开DCS探测器。
    2. 确保每个DCS探测器测量的光强度都足够。根据经验,需要超过 10 kHz。
    3. 如果测量强度高于800 kHz,请使用中性密度滤光片减少光子计数,以免损坏探测器。对于较短(< 1 cm)的源检测器分离,这通常是一个问题。
      注意:除了可能损坏DCS探测器外,高于800 kHz的光子计数也可能由于探测器中的非线性效应而带来误差。
    4. 检查自相关曲线以确保良好的皮肤耦合(参见 代表性结果图2), 并在必要时重新定位光学探头。
    5. 如果在上一步中需要重新定位探头,请重复步骤 4.2 和 4.3。这些步骤可能需要重复多次。
      注意:每次移动探头时,必须关闭DCS和FD-DOS探测器。要关闭DCS探测器,请手动将开关移动到"关闭"位置。通过单击FD-DOS软件中的"所有探测器关闭"按钮,将关闭FD-DOS探测器。
  4. 当探头和皮肤之间实现良好接触时,通过单击 GUI 中的"停止"按钮停止数据收集。然后,在"文件夹"文本框中设置实验和患者标识符,并在"文件名"文本框中写入ROI名称。
  5. 按GUI中的"开始"按钮开始数据采集。
  6. 在协议要求的情况下,在第一个ROI中收集数据。如有必要,将探头移动到其他ROI并重复测量。
    注意:监测期可能因研究目标而异。

5. 测量过程中对实验者的考虑

  1. 开始测量后,在GUI的"实验信息"选项卡中写下相关的患者信息(例如,损伤的类型和位置,正在服用的药物,年龄,性别等)。
  2. 确保通过单击 GUI 上的"标记"按钮来标记在监控期间发生的任何相关事件。每次标记后,请确保在 GUI 的"实验信息"选项卡中编写事件描述。

6. 停止数据收集

  1. 通过按 GUI 中的"停止"按钮停止数据收集。
  2. 通过按下FD-DOS软件中表示为两个红色方块的停止数据采集和记录按钮来停止FD-DOS软件。
  3. 通过将开关翻转到"关闭"位置来关闭DCS探测器,通过将钥匙转到"关闭" 位置来关闭DCS激光器。
  4. 通过单击"所有探测器关闭"按钮关闭FD-DOS模块的PMT。
  5. 从患者头部取下探头,然后从探头上取下双面胶带。然后,用消毒湿巾清洁探头。
  6. 尽快重复测量每个固体模型的光学特性,以确保在整个监测过程中校准保持充分(参见步骤4.2.2)。
    注意:理想情况下,校准步骤应在从患者头部取下光学探头后立即完成(步骤6.6)。但是,由于时间问题,在下一节中介绍的示例中,这是在存储设施中完成的。
  7. 用消毒湿巾清洁系统及其附件。
  8. 将推车推回储藏室。

结果

理想情况下,使用DCS模块获得的归一化自相关曲线在零延迟时间外推(使用单模光纤14时)应约为1.5,并且在较长的延迟时间下,曲线应衰减至1。曲线应该是平滑的,对于较长的源-检测器分离,它应该具有更快的衰减。 图2A显示了良好自相关的示例。 图2B 显示了不良自相关曲线的示例;在本例中,无法区分不同源检测器分离的曲线。 ...

讨论

本文提出了一种混合光学系统,该系统可以在旁边提供神经危重症患者的脑血流、脑氧合和脑氧代谢的实时信息。弥漫光学技术的使用以前曾被认为是临床情况下非侵入性床旁监测的潜在标志物。之前的一项研究通过病例报告9重点关注神经ICU住院期间光学监测的临床方面和可行性。这项工作的重点是详细说明与漫反射光学实时监测相关的相关和创新方面。具体来说,本文提出了...

披露声明

作者声明了与本文的研究、作者身份和/或出版有关的以下潜在利益冲突:RC Mesquita 有一项待决专利申请和与这项工作相关的另外两项专利(美国专利 10,342,488 和 10,064,554)。目前没有作者从这些专利中获得版税或付款。

   

致谢

我们感谢圣保罗研究基金会 (FAPESP) 通过第 2012/02500-8 (RM)、2014/25486-6 (RF) 和 2013/07559-3 号文件提供的支持。资助者在研究设计、数据收集和分析、发表决定或手稿准备方面没有任何作用。

材料

NameCompanyCatalog NumberComments
3D PrinterSethi3DS23D-printer used to print the customizable probes
Arduino UNOArduinoUNO REV3Microcontroller responsible to interleave the DCS and FD-DOS measurements
DCS CorrelatorCorrelator.comFlex11-16chComponent of the DCS module
DCS Dectectors IO BoardsExcelitas TechnologySPCM-AQ4C-IOComponent of the DCS module
DCS DetectorsExcelitas TechnologySPCM-AQ4CComponent of the DCS module
DCS LaserCrystaLaserDL785-120-SOComponent of the DCS module
DCS Power supplyArtesynUMP10T-S2A-S2A-S2A-S2A-IES-00-AComponent of the DCS module (power supply for the DCS detecto; 2, 5 and 30V)
FD-DOS fibersISSImagent suppliesThe fibers used for FD-DOS detection and illumination are provived by ISS
Flexible 3D printer materialSethi3DNinjaFlexMaterial used to print the flexible customizable probes
ImagentISSImagentFD-DOS module
Laser safety googlesThorlabsLG9
Multi-mode fiberThorlabsFT400EMTMulti-mode fiber used for DCS illumination
Neutral density filter 1.0 ODEdmund Optics53-705Neutral density filter for the short source detector separations
Single-mode optical fiberThorlabs780HPSingle-mode optical fiber used for the DCS detectors
System batterySMSNET4System battery used for transportation

参考文献

  1. Papanikolaou, J., et al. Cardiac and central vascular functional alterations in the acute phase of aneurysmal subarachnoid hemorrhage. Critical Care Medicine. 40 (1), 223-232 (2012).
  2. Sarrafzadeh, A. S., Vajkoczy, P., Bijlenga, P., Schaller, K. Monitoring in neurointensive care - The challenge to detect delayed cerebral ischemia in high grade aneurysmal SAH. Frontiers in Neurology. 5 (134), (2014).
  3. Messerer, M., Daniel, R. T., Oddo, M. Neuromonitoring after major neurosurgical procedures. Minerva Anestesiologica. 78 (7), 810-822 (2012).
  4. Le Roux, P., et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: A statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Medicine. 40 (9), 1189-1209 (2014).
  5. Roh, D., Park, S. Brain Multimodality Monitoring: Updated Perspectives. Current Neurology and Neuroscience Reports. 16 (6), 1-10 (2016).
  6. Oddo, M., Villa, F., Citerio, G. Brain multimodality monitoring: An update. Current Opinion in Critical Care. 18 (2), 111-118 (2012).
  7. Sandsmark, D. K., Kumar, M. A., Park, S., Levine, J. M. Multimodal Monitoring in Subarachnoid Hemorrhage. Stroke. 43 (5), 1440-1445 (2012).
  8. Baker, W. B., et al. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. Journal of Cerebral Blood Flow and Metabolism. 39 (8), 1469-1485 (2019).
  9. Menezes Forti, R., et al. Real-time non-invasive assessment of cerebral hemodynamics with diffuse optical spectroscopies in a neuro intensive care unit: an observational study. Frontiers in Medicine. 7 (147), (2020).
  10. Kim, M. N., et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocritical Care. 12 (2), 173-180 (2010).
  11. Selb, J., et al. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients. Neurophotonics. 5 (04), 1 (2018).
  12. Durduran, T., Choe, R., Baker, W. B., Yodh, A. G. Diffuse optics for tissue monitoring and tomography. Reports on Progress in Physics. 73 (7), 76701 (2010).
  13. Jacques, S. L. Optical properties of biological tissues: a review. Physics in Medicine and Biology. 58 (11), 37-61 (2013).
  14. Durduran, T., Yodh, A. G. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. NeuroImage. 85, 5163 (2014).
  15. Durduran, T., et al. Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Optics Letters. 29 (15), 1766 (2004).
  16. Selb, J., et al. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia. Neurophotonics. 1 (1), 15005 (2014).
  17. Shang, Y., Li, T., Yu, G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiological Measurement. 38 (4), 1-26 (2017).
  18. Mesquita, R. C., et al. Direct measurement of tissue blood flow and metabolism with diffuse optics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 369 (1955), 4390-4406 (2011).
  19. Culver, J. P., et al. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. Journal of Cerebral Blood Flow and Metabolism. 23 (8), 911-924 (2003).
  20. Valabrègue, R., Aubert, A., Burger, J., Bittoun, J., Costalat, R. Relation between Cerebral Blood Flow and Metabolism Explained by a Model of Oxygen Exchange. Journal of Cerebral Blood Flow and Metabolism. 23 (5), 536-545 (2003).
  21. Farzam, P., et al. Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods. Scientific Reports. 7 (1), 15786 (2017).
  22. Wong, F. Cerebral blood flow measurements in the neonatal brain. Prenatal and Postnatal Determinants of Development. 109, 69-87 (2016).
  23. Busch, D. R., et al. Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient. Pediatric Research. , 1-9 (2020).
  24. Dehaes, M., et al. Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia. Journal of Cerebral Blood Flow and Metabolism. 34 (1), 87-94 (2014).
  25. Ferradal, S. L., et al. Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: Feasibility and clinical implications. Scientific Reports. 7 (1), 44117 (2017).
  26. Busch, D. R., et al. Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest. Biomedical Optics Express. 7 (9), 3461 (2016).
  27. Wang, D., et al. Fast blood flow monitoring in deep tissues with real-time software correlators. Biomedical Optics Express. 7 (3), 776 (2016).
  28. Ko, T. S., et al. Non-invasive optical neuromonitoring of the temperature-dependence of cerebral oxygen metabolism during deep hypothermic cardiopulmonary bypass in neonatal swine. Journal of Cerebral Blood Flow & Metabolism. 40 (1), 187-203 (2018).
  29. Pennekamp, C. W. A. A., et al. Near-infrared spectroscopy can predict the onset of cerebral hyperperfusion syndrome after carotid endarterectomy. Cerebrovascular Diseases. 34 (4), 314-321 (2012).
  30. Pennekamp, C. W. A. A., Bots, M. L., Kappelle, L. J., Moll, F. L., de Borst, G. J. The Value of Near-Infrared Spectroscopy Measured Cerebral Oximetry During Carotid Endarterectomy in Perioperative Stroke Prevention. A Review. European Journal of Vascular and Endovascular Surgery. 38 (5), 539-545 (2009).
  31. Shang, Y., et al. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram. Physics in Medicine and Biology. 56 (10), 3015-3032 (2011).
  32. Delgado-Mederos, R., et al. Transcranial diffuse optical assessment of the microvascular reperfusion after thrombolysis for acute ischemic stroke. Biomedical Optics Express. 9 (3), 1262 (2018).
  33. Favilla, C. G., et al. Optical Bedside Monitoring of Cerebral Blood Flow in Acute Ischemic Stroke Patients During Head-of-Bed Manipulation. Stroke. 45 (5), 1269-1274 (2014).
  34. Gregori-Pla, C., et al. Early microvascular cerebral blood flow response to head-of-bed elevation is related to outcome in acute ischemic stroke. Journal of Neurology. 266 (4), 990-997 (2019).
  35. Kim, M. N., et al. Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults. Neurocritical Care. 20 (3), 443-453 (2014).
  36. Ko, T., et al. Prediction of Return of Spontaneous Circulation During Cardiopulmonary Resuscitation using Frequency-Domain Diffuse Optical Spectroscopy in a Pediatric Swine Model of Asphyxial Cardiac Arrest. Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS). , (2018).
  37. Favilla, C. G., et al. Non-invasive respiratory impedance enhances cerebral perfusion in healthy adults. Frontiers in Neurology. 8, (2017).
  38. Favilla, C. G., et al. Perfusion Enhancement with Respiratory Impedance After Stroke (PERI-Stroke). Neurotherapeutics. 16 (4), 1296-1303 (2019).
  39. Ritzenthaler, T., et al. Cerebral near-infrared spectroscopy a potential approach for thrombectomy monitoring. Stroke. 48 (12), 3390-3392 (2017).
  40. Fantini, S., Sassaroli, A., Tgavalekos, K. T., Kornbluth, J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 3 (3), 31411 (2016).
  41. Parthasarathy, A. B., et al. Dynamic autoregulation of cerebral blood flow measured non-invasively with fast diffuse correlation spectroscopy. Journal of Cerebral Blood Flow and Metabolism. 38 (2), 230-240 (2018).
  42. Kainerstorfer, J. M., Sassaroli, A., Tgavalekos, K. T., Fantini, S. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. Journal of Cerebral Blood Flow and Metabolism. 35 (6), 959-966 (2015).
  43. Baker, W. B., et al. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. Journal of Cerebral Blood Flow and Metabolism. 37 (8), 2691-2705 (2017).
  44. Lin, P. Y., et al. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. Journal of Visualized Experiments. (73), e4379 (2013).
  45. Wintermark, P., Hansen, A., Warfield, S. K., Dukhovny, D., Soul, J. S. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. NeuroImage. 85, 287-293 (2014).
  46. Busch, D. R., et al. Detection of brain hypoxia based on noninvasive optical monitoring of cerebral blood flow with diffuse correlation spectroscopy. Neurocritical Care. 30 (1), 72-80 (2019).
  47. Davies, D. J., et al. Cerebral oxygenation in traumatic brain injury: Can a non-invasive frequency domain near-infrared spectroscopy device detect changes in brain tissue oxygen tension as well as the established invasive monitor. Journal of Neurotrauma. 36 (7), 1175-1183 (2019).
  48. Leal-Noval, S. R., et al. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Medicine. 36 (8), 1309-1317 (2010).
  49. Fantini, S., Franceschini, M. A., Fishkin, J. B., Barbieri, B., Gratton, E. Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique. Applied Optics. 33 (22), 5204 (1994).
  50. Fantini, S., et al. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry. Optical Engineering. 34 (1), 32 (1995).
  51. Carpenter, D. A., Grubb, R. L., Tempel, L. W., Powers, W. J. Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism. 11 (5), 837-844 (1991).
  52. Johansen-Berg, H., et al. The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences, U.S.A. 99 (22), 14518-14523 (2002).
  53. Hunt, W. E., Hess, R. M. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. Journal of Neurosurgery. 28 (1), 14-20 (1968).
  54. Fisher, C. M., Kistler, J. P., Davis, J. M. Relation of Cerebral Vasospasm to Subarachnoid Hemorrhage Visualized by Computerized Tomographic Scanning. Neurosurgery. 6 (1), 1-9 (1980).
  55. Carey, J. R., et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 125 (4), 773-788 (2002).
  56. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., Schlaug, G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75 (24), 2176-2184 (2010).
  57. Schaechter, J. D., et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: A preliminary study. Neurorehabilitation and Neural Repair. 16 (4), 326-338 (2002).
  58. Dehaes, M., et al. Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult. Biomedical Optics Express. 2 (3), 552 (2011).
  59. Fantini, S., Sassaroli, A. Frequency-domain techniques for cerebral and functional near-infrared spectroscopy. Front Neurosci. 14, 1-18 (2020).
  60. Blaney, G., Sassaroli, A., Pham, T., Fernandez, C., Fantini, S. Phase dual-slopes in frequency-domain near-infrared spectroscopy for enhanced sensitivity to brain tissue: First applications to human subjects. Journal of Biophotonics. 13 (1), 201960018 (2020).
  61. Abdalsalam, O., O'Sullivan, T. D., Howard, S., Zhang, Y. Self-calibrated frequency domain diffuse optical spectroscopy with a phased source array. Optical Tomography and Spectroscopy of Tissue XIII Conference. 1087403, 2 (2019).
  62. Applegate, M. B., Istfan, R. E., Spink, S., Tank, A., Roblyer, D. Recent advances in high speed diffuse optical imaging in biomedicine Recent advances in high speed diffuse optical imaging in biomedicine. APL Photonics. 5, 040802 (2020).
  63. Torricelli, A., et al. Time domain functional NIRS imaging for human brain mapping. NeuroImage. 85, 28-50 (2014).
  64. Pifferi, A., et al. New frontiers in time-domain diffuse optics , a review. Journal of Biomedical Optics. 21 (9), 091310 (2016).
  65. Gagnon, L., Desjardins, M., Jehanne-Lacasse, J., Bherer, L., Lesage, F. Investigation of diffuse correlation spectroscopy in multi-layered media including the human head. Optics Express. 16 (20), 15514 (2008).
  66. Verdecchia, K., et al. Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults. Biomedical Optics Express. 7 (9), 3659 (2016).
  67. Liemert, A., Kienle, A. Light diffusion in a turbid cylinder II Layered case. Optics Express. 18 (9), 9266 (2010).
  68. Hallacoglu, B., Sassaroli, A., Fantini, S. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. PLoS One. 8 (5), 64095 (2013).
  69. Alexandrakis, G., Busch, D. R., Faris, G. W., Patterson, M. S. Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model. Applied Optics. 40 (22), 3810 (2001).
  70. Martelli, F., Sassaroli, A., Del Bianco, S., Yamada, Y., Zaccanti, G. Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 67 (5), 14 (2003).
  71. Mesquita, R. C., et al. Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions. Biomedical Optics Express. 4 (7), 978 (2013).
  72. Wang, D., et al. Influence of probe pressure on the pulsatile diffuse correlation spectroscopy blood flow signal on the forearm and forehead regions. Neurophotonics. 6 (03), 1 (2019).
  73. Baker, W. B., et al. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts. Neurophotonics. 2 (3), 35004 (2015).
  74. He, L., et al. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. Neurophotonics. 5 (04), 1 (2018).
  75. Milej, D., et al. Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI. Journal of Cerebral Blood Flow & Metabolism. , (2019).
  76. Diop, M., Verdecchia, K., Lee, T. Y., St Lawrence, K. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. Biomedical Optics Express. 2 (7), 2068 (2011).
  77. Khalid, M., et al. Development of a stand-alone DCS system for monitoring absolute cerebral blood flow. Biomedical Optics Express. 10 (9), 4607 (2019).
  78. Kohl-Bareis, M., et al. Noninvasive monitoring of cerebral blood flow by a dye bolus method: Separation of brain from skin and skull signals. Journal of Biomedical Optics. 7 (3), 464 (2002).

Erratum


Formal Correction: Erratum: Real-Time Monitoring of Neurocritical Patients with Diffuse Optical Spectroscopies
Posted by JoVE Editors on 12/07/2022. Citeable Link.

An erratum was issued for: Real-Time Monitoring of Neurocritical Patients with Diffuse Optical Spectroscopies. The Authors section was updated from:

Rodrigo Menezes Forti1,2
Marilise Katsurayama2,3
Lenise Valler2,3
Andrés Quiroga1,2
Luiz Simioni1
Julien Menko4
Antonio L. E. Falcão3
Li Min Li2,5
Rickson C. Mesquita1,2
1Institute of Physics, University of Campinas
2Brazilian Institute of Neuroscience and Neurotechnology
3Clinical Hospital, University of Campinas
4Department of Emergency Medicine, Albert Einstein College of Medicine
5School of Medical Sciences, University of Campinas

to:

Rodrigo Menezes Forti1,2
Marilise Katsurayama2,3
Giovani Grisotti Martins1
Lenise Valler2,3
Andrés Quiroga1,2
Luiz Simioni1
Julien Menko4
Antonio L. E. Falcão3
Li Min Li2,5
Rickson C. Mesquita1,2
1Institute of Physics, University of Campinas
2Brazilian Institute of Neuroscience and Neurotechnology
3Clinical Hospital, University of Campinas
4Department of Emergency Medicine, Albert Einstein College of Medicine
5School of Medical Sciences, University of Campinas

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

165

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。