JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

各种先天性隔膜气喘和胎儿气管闭塞的动物模型在伦理问题、成本、手术难度、大小、存活率和遗传工具的可用性方面都存在利弊。该模型为研究气管闭塞和增加的发光压力对肺发育的影响提供了新的工具。

摘要

胎儿气管闭塞 (TO) 是一种既定的治疗方式,可促进胎儿肺生长和严重先天性隔膜气喘 (CDH) 中的生存。在 TO 之后,分泌上皮液的保留会增加发光压力并诱导肺部生长。已定义各种动物模型,以了解 CDH 和 TO 的病理生理学。它们都有自己的优点和缺点,如技术的难度、动物的大小、成本、高死亡率和遗传工具的可用性。在这里,一个新的跨子宫模型的穆林胎儿托被描述。怀孕的小鼠被麻醉,子宫通过中线腹腔切除术暴露。选定胎儿的气管与气管后面放置的单个转宫缝合、一条胡萝卜动脉和一条血管相成。大坝被关闭,并被允许恢复。胎儿是在分治前收集的。托胎儿的肺与体重比高于控制胎儿的体重比。该模型为研究人员提供了一个新的工具,以研究 TO 和增加的发光压力对肺部发育的影响。

引言

先天性隔膜气喘(CDH)发生在1:2500怀孕,导致肺发育减退和新生儿肺高血压1,2,3,4,5,6。胎儿气管闭塞 (TO) 是严重 CDH 患者在妊娠周 26-30 中接受胎儿切除术的既定产前治疗,其中气球放置在卡琳娜正上方,然后在第 32个妊娠周切除。这种临时性托导胎儿肺生长,提高存活率。先天性高气道阻塞综合症是一种与肺增生相关的致命疾病,它激励外科医生对气管进行人工遮挡,以促进分泌上皮液的保留。这种闭塞增加了发光压力,并诱导肺生长7。然而,应扭转闭塞,使上皮细胞成熟。

已开发出各种CDH和托-卵巢、兔子、老鼠和老鼠的动物模型,以了解CDH和托的病理生理学。它们都有自己的优点和缺点,如技术的难度、动物的大小、成本、高死亡率和遗传工具的可用性。虽然用于卵巢模型的手术技术与人类使用的非常相似,可以逆转,但该模型的主要缺点是动物的费用、妊娠期长以及可能的手术次数有限。兔子模型的妊娠期较短,比绵羊模型便宜。然而,兔子模型是不可逆转的8,9。Murine 模型的成本最低,每次怀孕的胎儿数量最多,基因组特征最好,并且具有广泛的细胞和分子分析工具。然而,一个关键的缺点是 TO 缺乏可逆性,无法充分理解 TO 的影响。在此,提出了一种方法,结合了前面提到的模型的所有优势,并创建一个简单,潜在的可逆的,微创啮齿动物托模型。

研究方案

所有实验都符合《国家卫生研究院实验室动物护理和使用指南》(NIH出版物第80023号,修订1978年)。该程序经辛辛那提儿童研究基金会机构动物护理和使用委员会批准,符合IACUC协议#2016-0068。

1. 准备

  1. 为了配合年龄匹配的野生类型(WT)C57BL/6小鼠,将它们放在同一个笼子里下午6:00.m,并在第二天上午9:00.m分开。
  2. 要确定胚胎日0(E0),看看阴道塞,它有一个同质的外区连接到阴道壁和内区是纤维,包括一些精子,形成纠缠质量与插头材料的纤维混合。
  3. 记录小鼠交配时的重量。
  4. 在E10上重新称量小鼠,以确保持续怀孕。
  5. 在E16.5(早期眼部阶段)进行手术。
  6. 消毒手术过程中使用的器械:剪刀、针架、钳子、钳子、手术刀具和手柄。
  7. 手术平台预热至 24 °C,并在手术前准备热盐水 (24 °C)。
  8. 为恢复创造温暖的环境,并将湿食物留在笼子里供早期喂养。
  9. 与经营中的动物呆在一起,直到它们能够养活自己。
  10. 手术后,将手术小鼠单独关在各自的笼子里。

2. 麻醉

  1. 手术前1小时在怀孕的水坝上涂抹皮下0.1毫克/千克丁丙诺啡。
  2. 在麻醉过程中连续使用吸入的5mL/h异氟烷进行感应和2mL/h。
  3. 监测怀孕小鼠下巴的运动。

3. 拉帕罗切除术

  1. 用酒精和碘清洁腹部表面。在整个操作过程中保持无菌状态。
  2. 对怀孕水坝的腹腔切除术进行垂直切口。将所有图层分开切割。
  3. 识别每边的子宫角。
  4. 确定手术的候选胎儿。
    注意:不要对离阴道最近的胎儿进行手术。
  5. 如果每侧(大多数时间有4个胎儿)有偶数胎儿,则对每个子宫角中的两个胎儿进行手术;如果子宫角有奇数(大多数时间为3个),则对每个子宫角中的1个胎儿进行手术。

4. 气管闭塞

  1. 使用 2.5 倍放大镜进行可视化。
  2. 以横向方式定位子宫角。
  3. 以幼崽,朝上,两根手指之间使用幼崽的眼睛和尾巴作为指导,以定位胎儿。
  4. 对小狗的头部施加轻柔的压力,使头部得以伸展,从而实现颈部的可视化。
  5. 使用 6.0 聚丙烯缝合线与触电针执行 TO (图1)。将胎盘放在一边,远离针头的出入口。
  6. 将针头横穿子宫侧面,从胎盘穿过颈部前部的1/3rd。
  7. 轻轻地移动针头,直到颈部的中线,并引导到前部,然后退出气管之间的颈部和对面的胡萝卜护套和子宫。
  8. 打结缝合线,注意保持膜和子宫壁的完整性,并在打结期间保持脐带安全。

figure-protocol-1456
1:气管闭塞。A) 跨子宫缝合通过颈部。(B) 缝合通过后和结之前结构的示意图表示。缩写:C = 胡萝卜动脉;J=巨静脉;T =特拉查;E = 食道;V =椎骨。请单击此处查看此图的较大版本。

5. 腹部墙关闭

  1. 更换腹部的子宫角。
  2. 在关闭前将2mL的温暖无菌盐水注射到腹腔中。
  3. 将运行的 5/0 多glactin 缝合,以关闭腹部壁,并用非运行丝绸缝合合线关闭皮肤。
  4. 在腹中应用0.1毫克/千克丁丙诺啡进行镇痛,并允许在温暖的孵化器中恢复大坝。

6. 收获

  1. 在怀孕的大坝上涂上麻醉剂,通过剖腹产在E18.5收获所有胎儿。
  2. 通过观察胎儿的运动来检查胎儿的生存能力。
  3. 使用至少两种不同的技术进行安乐死:二氧化碳窒息和颈椎脱位。
  4. 根据兽医实验室的规定取出尸体。
  5. 称体重所有胎儿。
  6. 在胸腔上进行垂直切口切除肺。
  7. 解剖胚胎的肺部,并称它们以计算总肺与体重的比(LBWR = (左肺重量 + 右肺重量)/体重 x100)。

7. 病理学

  1. 将组织快速冷冻在液氮、最佳切割温度化合物和干冰中。
  2. 使用冷冻统计器将样品切成 10 μm 部分,并将它们安装在多晶氨酸涂层滑梯上。
  3. 在 60 °C 的夜间烘烤滑梯,用血氧林和 eosin 染色烤滑梯,然后使用宽场显微镜以 10-20 倍的放大倍数安装幻灯片以获取图像。

8. 蛋白质和DNA分析的组织处理

  1. 捕捉冻结解剖的胎儿肺,并在300μL的放射性免疫沉淀检测缓冲中使其均质化。离心机在 4 °C 5 分钟在 18,000 × g.
  2. 提取和量化蛋白质,DNA和RNA10,12。

结果

这项研究检查了37个胎儿:20个(54.1%)截至17日(45.9%)作为控制。由于气管不能在托组的4个胎儿中被遮挡,所以他们被排除在研究之外。两组胎儿的死亡率没有显著差异:4个胎儿(25%)在托组和2胎儿(12%)在对照组(p=0.334,赔率比(OR)2.5,95%置信区间(CI)0.39-16.05)。TO组的平均体重、肺重和肺与体重之比(LBWR)高于对照组(表1)。TO 和对照组之间的 LBWR?...

讨论

这种方法描述了小鼠胎儿气管闭塞的外科手术及其对肺部发育的影响。协议中有一些关键步骤,应仔细执行才能成功执行 TO。手术平台的温暖和盐水引入腹腔对妊娠的进展至关重要。此外,必须对幼崽的头部施加轻微的压力,以确保颈部暴露。

6.0 聚丙烯缝合线是唯一可用于此技术的缝合线。大于 6.0 的缝合针较厚,破坏颈部气管周围的结构,导致胎儿丧失。较薄的缝合线的?...

披露声明

作者没有什么可透露的。

致谢

这项研究没有从公共、商业或非营利部门的资助机构获得任何具体赠款。所有作者都为数据的研究、获取、分析和解释的概念和设计、起草文章以及修改该文章,以便提交重要的知识内容和最终批准版本做出了重大贡献。作者感谢坎·萨本库奥卢在制作手术技术艺术品方面所做的善心努力。

材料

NameCompanyCatalog NumberComments
Buprenorphine Par PharmaceuticalNDC 42023-179-05For regional anesthesia
Isoflurane  Halocarbon Life SciencesNDC 66794-017-25For general anesthesia
Magnification glassesUSA Medical-SurgicalSLR-250LBLKAt least 2.5x
Nikon 90i microscopeNikon3417Motorized Fluorescence
Nucleospin Tissue Kit Macherey-Nagel, Düren, Germany740952.5DNA isolation
Pierce BCA Protein Assay Kit Thermo Fisher, IL, USA23225Protein quantification
Polyglactin sutureEthiconVCP451H4-0, 24 mm, cutting
Polylysine slides VWR 48382-117Microscope adhesion slides
Polypropylene sutureEthiconY432H6-0, 13 mm 1/2c Taperpoint
RIPA buffer Sigma-Aldrich, Missouri, USAR0278-50mlProtein isolation
Silk sutureEthiconVCP682G4-0, 24 mm, cutting
Trizol Invitrogen 15596026RNA isolation

参考文献

  1. Wright, N. J. Global PaedSurg Research Collaboration. Management and outcomes of gastrointestinal congenital anomalies in low, middle and high income countries: protocol for a multicentre, international, prospective cohort study. BMJ Open. 9, 030452 (2019).
  2. Aydin, E. Current approach for prenatally diagnosed congenital anomalies that requires surgery. Turkish Clinics Journal of Gynecology and Obstetrics. 27, 193-199 (2016).
  3. Nolan, H., et al. Hemorrhage after on-ECMO repair of CDH is equivalent for muscle flap and prosthetic patch. Journal of Pediatric Surgery. 54 (10), 2044-2047 (2019).
  4. Aydin, E., et al. Congenital diaphragmatic hernia: the good, the bad, and the tough. Pediatric Surgery International. 35 (3), 303-313 (2019).
  5. Aydın, E., Özler, O., Burns, P., Lim, F. Y., Peiró, J. L. Left congenital diaphragmatic hernia-associated musculoskeletal deformities. Pediatric Surgery International. 35 (11), 1265-1270 (2019).
  6. Aydın, E., et al. When primary repair is not enough: a comparison of synthetic patch and muscle flap closure in congenital diaphragmatic hernia. Pediatric Surgery International. 36 (4), 485-491 (2020).
  7. Wilson, M., Difiore, J. W., Peters, C. A. Experimental fetal tracheal ligation prevents the pulmonary hypoplasia associated with fetal nephrectomy: Possible application for congenital diaphragmatic hernia. Journal of Pediatric Surgery. 28 (11), 1433-1440 (1993).
  8. Mudri, M., et al. The effects of tracheal occlusion on Wnt signaling in a rabbit model of congenital diaphragmatic hernia. Journal of Pediatric Surgery. 54 (5), 937-944 (2019).
  9. Khan, P. A., Cloutier, M., Piedboeuf, B. Tracheal occlusion: a review of obstructing fetal lungs to make them grow and mature. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. 145 (2), 125-138 (2007).
  10. Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 15 (3), 532-537 (1993).
  11. Beurskens, N., Klaassens, M., Rottier, R., De Klein, A., Tibboel, D. Linking animal models to human congenital diaphragmatic hernia. Birth Defects Research Part A: Clinical and Molecular Teratology. 79 (8), 565-572 (2007).
  12. Varisco, B. M., et al. Excessive reversal of epidermal growth factor receptor and ephrin signaling following tracheal occlusion in rabbit model of congenital diaphragmatic hernia. Molecular Medicine. 22, 398-411 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

168

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。