Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Various animal models of congenital diaphragmatic hernia and fetal tracheal occlusion present advantages and disadvantages regarding ethical issues, cost, surgical difficulty, size, survival rates, and availability of genetic tools. This model provides a new tool to study the impact of both tracheal occlusion and increased luminal pressure on lung development.
Fetal tracheal occlusion (TO), an established treatment modality, promotes fetal lung growth and survival in severe congenital diaphragmatic hernia (CDH). Following TO, retention of the secreted epithelial fluid increases luminal pressure and induces lung growth. Various animal models have been defined to understand the pathophysiology of CDH and TO. All have their own advantages and disadvantages such as the difficulty of the technique, the size of the animal, cost, high mortality rates, and the availability of genetic tools. Herein, a novel transuterine model of murine fetal TO is described. Pregnant mice were anesthetized, and the uterus exposed via a midline laparotomy. The trachea of selected fetuses were ligated with a single transuterine suture placed behind the trachea, one carotid artery, and one jugular vein. The dam was closed and allowed to recover. Fetuses were collected just before parturition. Lung to body weight ratio in TO fetuses was higher than that in control fetuses. This model provides researchers with a new tool to study the impact of both TO and increased luminal pressure on lung development.
Congenital diaphragmatic hernia (CDH) occurs in 1:2500 pregnancies and results in pulmonary hypoplasia and neonatal pulmonary hypertension1,2,3,4,5,6. Fetal tracheal occlusion (TO) is an established prenatal therapy in severe CDH patients involving fetoscopy in the 26-30th gestational week in which a balloon is placed just above the carina and then removed in the 32nd gestational week. This temporary TO induces fetal lung growth and improves survival.....
All experiments have complied with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80023, revised 1978). The procedure was approved with IACUC protocol #2016-0068 by the Cincinnati Children's Research Foundation Institutional Animal Care and Use Committee.
1. Preparation
This study examined 37 fetuses: 20 (54.1%) as TO vs. 17 (45.9%) as control. As the trachea could not be occluded in 4 fetuses in the TO group, they were excluded from the study. There was no significant difference in mortality in both groups: 4 fetuses (25%) in the TO group and 2 fetuses (12%) in the control group (p=0.334, odds ratio (OR) 2.5, 95% confidence interval (CI) 0.39-16.05). The mean body weight, lung weight, and lung to body weight ratio (LBWR) were higher in the TO group than.......
This method describes a surgical procedure of fetal tracheal occlusion in mice and its impact on lung development. There are some critical steps in the protocol that should be carefully performed for successful TO. The warmth of the platform on which the surgery takes place and the saline introduced into the peritoneal cavity is crucial for the progression of the pregnancy. In addition, a slight pressure has to be applied to the head of the pups to ensure exposure of the neck.
A 6.0 polypropyl.......
The authors have nothing to disclose.
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. All authors have made substantial contributions to the conception and design of the study, acquisition, analysis, and interpretation of data, drafting the article, and revising it for important intellectual content and final approval of the version to be submitted. The authors thank Can Sabuncuoğlu for his kind efforts on the production of the artwork of the surgical technique.
....Name | Company | Catalog Number | Comments |
Buprenorphine | Par Pharmaceutical | NDC 42023-179-05 | For regional anesthesia |
Isoflurane | Halocarbon Life Sciences | NDC 66794-017-25 | For general anesthesia |
Magnification glasses | USA Medical-Surgical | SLR-250LBLK | At least 2.5x |
Nikon 90i microscope | Nikon | 3417 | Motorized Fluorescence |
Nucleospin Tissue Kit | Macherey-Nagel, Düren, Germany | 740952.5 | DNA isolation |
Pierce BCA Protein Assay Kit | Thermo Fisher, IL, USA | 23225 | Protein quantification |
Polyglactin suture | Ethicon | VCP451H | 4-0, 24 mm, cutting |
Polylysine slides | VWR | 48382-117 | Microscope adhesion slides |
Polypropylene suture | Ethicon | Y432H | 6-0, 13 mm 1/2c Taperpoint |
RIPA buffer | Sigma-Aldrich, Missouri, USA | R0278-50ml | Protein isolation |
Silk suture | Ethicon | VCP682G | 4-0, 24 mm, cutting |
Trizol | Invitrogen | 15596026 | RNA isolation |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone