登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了一个修改后的TGA方法,用于估计草本植物生物质中的木质素含量。这种方法通过与木质素形成特定的硫化物键来估计木质素含量,并且比克拉森方法具有优势,因为它需要相对较小的木质素含量估计样本。

摘要

木质素是一种天然聚合物,是地球上仅次于纤维素的第二富足聚合物。木质素主要沉积在植物二级细胞壁中,是一种芳香异质体,主要由三种具有重要工业意义的单酚组成。木质素在植物生长发育中起着重要作用,在动物饲料、木材和工业木质素产品的质量方面具有重要的保护作用。准确估计木质素含量对于基本了解木质素生物合成和生物质的工业应用都至关重要。硫二甘油酸(TGA)方法是估算植物生物量中木质素总含量的高度可靠的方法。这种方法通过与木质素的苯酒精群形成硫化物来估计木质素的含量,这种醇组在碱性条件下是可溶性的,在酸性条件下不溶性。木质素总含量使用商业竹木质素生成的标准曲线进行估算。

引言

木质素是植物细胞壁的重要承重成分之一,也是地球上第二丰富的聚合物1。从化学上讲,木质素是一种由高分子量复合酚类化合物组成的交联异质体,形成芳香聚合物的天然可再生来源,并合成生物材料2、3。这种天然聚合物在植物生长、发育、生存、机械支持、细胞壁刚性、水运、矿物运输、耐食性、组织和器官发育、能量沉积以及生物和生物应力4、5、6、7等方面起着重要作用。利格宁主要由三种不同的单酚组成:针叶醇、西纳皮尔和p-coumaryl酒精,它们来自苯丙酮通路8,9。木质素的数量和单体的组成因植物种类、组织/器官类型和植物发育的不同阶段而异。根据来源和单酚成分,木质素大致分为软木、硬木和草木质素。软木主要由95%的针叶醇和4%的p-coumaryl和1%的甲基醇组成。硬木有针叶醇和甲基醇的比例相等,而草木质素是由针叶醇,锡那皮尔和p-coumaryl酒精11,12的不同比例组成。单体的组成至关重要,因为它决定了细胞壁的木质素强度、分解和降解,以及确定分子结构、分支和与其他多糖13、14的交叉连接。

由于其成本低、丰度高,在觅食、纺织业、造纸业以及生物乙醇、生物燃料和生物制品方面,木质素研究越来越受到重视。各种化学方法(如乙酰溴化物、酸洗涤剂、克拉森和高锰酸盐氧化)以及仪器方法(如近红外(NIR)光谱、核磁共振(NMR)光谱和紫外线(UV)光谱仪)用于木质素定量9、17。木质素的分析方法一般根据电磁辐射、重力和溶解度进行分类。电磁辐射对木质素的估计原理是基于木质素的化学特性,木质素吸收特定波长的光。这些结果的估计依据是,木质素比碳水化合物具有更强的紫外线吸收性。1962年,博尔克和萨默维尔使用氯化钾颗粒来估计木材中的木质素含量。然而,由于存在非木质素酚类化合物,且缺乏适当的灭绝系数,这种方法在草本样品中木质素含量的估计存在缺陷。1970年,弗格斯和戈林发现瓜亚西尔和注射器的复合吸收最大度为280纳米和270纳米,这纠正了博尔克和萨默维尔方法19的灭绝系数问题。后来,红外光谱学,一种高度敏感的表诺菌特征技术,也用于木质素估计与少量植物生物质样品。这种技术的一个例子是扩散反射傅立雅转换光谱仪。然而,这种方法缺乏一个类似于紫外线方法20的适当标准。后来,NIRS(近红外光谱)和NMR(核磁共振光谱)估计了木质素含量。虽然这些方法有缺点,但它们不会改变木质素的化学结构,保持其纯度20。

重度克拉森法是木质茎木质素估计的直接和最可靠的分析方法。重力木质素估计的基础是非木质化合物的水解/溶解和重力21不溶性木质素的收集。在这种方法中,通过浓缩H2SO4对生物量进行水解,提取木质素残留物20、22。。这种方法估计的木质素含量称为酸不溶性木质素或克拉森木质素。克拉森方法的应用取决于植物种类、组织类型和细胞壁类型。单宁、多糖和蛋白质等非木质素成分的可变量存在,导致酸不溶性/可溶性木质素含量的估计存在成比例差异。因此,只建议采用克拉森法,用于木质素对木质茎等高木质物质含量生物量的估计溶解性方法,如乙酰溴化物(AcBr)、酸不溶性木质素和硫二甘醇酸(TGA),是估计各种植物生物质来源木质素含量的最常用方法。Kim等人建立了两种通过溶解提取木质素的方法。第一种方法通过溶解纤维素和半纤维素提取木质素作为不溶性残留物,而第二种方法将木质素分离在可溶性部分,将纤维素和血细胞素作为不溶性残留物24。

在木质素估计中采用的类似方法基于溶解性是硫二甲酸 (TGA) 和乙酰溴化物 (AcBr) 方法25.TGA和乙酰溴化物方法均通过测量溶解木质素在280纳米的吸收量来估计木质素含量:然而,AcBr方法在木质素溶解过程中降解木兰,并显示木质素含量26的虚假增加。硫二甲酸酯 (TGA) 方法是更可靠的方法,因为它取决于与木质素的苯甲酸酯醇组与 TGA 的具体结合。TGA结合木质素是在酸性条件下使用HCl沉淀的,木质素的吸收量估计为280nm27。TGA 方法具有结构修饰较少、木质素估计可溶性、非木质素成分干扰少以及与 TGA 特定结合导致木质素精确估计等额外优点。

这种TGA方法是根据用于木质素含量估算的植物生物质样品的种类进行修改的。在这里,我们修改和调整了快速TGA方法的稻草27棉花组织估计木质素含量。简言之,干粉植物样品经过蛋白质溶解缓冲和甲醇提取,以去除蛋白质和酒精可溶性成分。酒精不溶性残留物在酸性条件下用TGA和沉淀木质素处理。使用商业竹木质素生成木质素标准曲线,并获得回归线(y = mx+c)。"x"值使用280纳米的木质素平均吸收值,而"m"和"c"值则从回归线输入,以计算棉花植物生物质样品中未知的木质素浓度。该方法分为五个阶段:1)植物样品的制备:2) 用水和甲醇清洗样品:3) 用TGA和酸处理颗粒,沉淀木质素:4) 木质素降水:和 5) 样品的标准曲线制备和木质素含量估算。前两个阶段主要侧重于植物材料制备,其次是水、PSB(蛋白质溶解缓冲器)和甲醇提取,以获得酒精不溶性材料。然后,它与TGA(硫二甘油酸)和HCl一起在第三阶段形成木质素复合物。最后,HCl被用来沉淀木质素,木质素溶解在氢氧化钠中,以测量其吸收量在280纳米28。

研究方案

1. 植物样本的制备

  1. 从温室收集两个月大的棉花植物(图1A)。
  2. 通过松开植物周围的土壤(图1B),轻轻翻转植物盆,将土壤和根部与完整的横向根分开。
  3. 将收集的植物彻底清洗在装满水的托盘中,以清除所有污垢(用于根部样本)(图1C)。
  4. 使用纸巾干燥分离的根、茎和叶组织,并贴上标签(图1D)。空气干燥2天在室温下,以防止任何真菌污染(图1E)。
  5. 将样品组织转移到贴有标签的容器/铝箔中,并在温度控制的孵化器中孵化7至10天(图1F)。
    注意:较高的温度可能会改变木质素结构。或者,冷冻干燥机可用于干燥样品 1 到 2 天,而不会对植物生物质造成任何化学变化。
  6. 使用刀片将孵化器干燥的组织切成5毫米大小的碎片,或者使用生物质研磨机研磨植物组织(图1G,图1H)。
    注:生物质研磨机/刀片必须在每个样品切割/磨碎后进行清洁。
  7. 使用冰柜磨机或低温研磨机将切割组织/生物质接地植物材料转移到研磨小瓶中,并磨成1毫米大小的细粉末。"
  8. 以 10 CPS(每个周期跨度 2 分钟)的速度将样品研磨三个周期,放入均匀粉末(图 1I,1J,1K)。
    注意:此时可以暂停实验,样品可在室温下储存在密封容器中,以便长期储存。

2. 用水、PSB和甲醇清洗样品

  1. 测量并记录实验室笔记本中用于木质素含量估算的所有空 2 mL 微胶管的重量。
  2. 将20毫克的地面样品粉末转移到预称重管中。用组织和组织粉称重管子,并将这些重量记录在实验室笔记本中。
  3. 在加热块中孵化所有 2 mL 微胶管(带打开盖)20 毫克组织粉末,或在 60 °C 下烤箱中孵化 1 小时。
  4. 孵化后,在室温下冷却样品10分钟(RT)。
  5. 在每个微管中加入 1.8 mL 的水,然后通过漩涡混合。然后,离心机在RT 10分钟内25,200 x g(15,000 rpm),丢弃超自然(图2)。
  6. 在每个保留的颗粒中加入 1.8 mL 的蛋白质溶解缓冲 (PSB) (表 1),然后通过漩涡混合。离心机在 RT 的 25,200 x g (15,000 rpm) 10 分钟,并丢弃超母体。
  7. 每个示例再次重复步骤 2.6。
  8. 在每个颗粒中加入 1.8 mL 的水,通过漩涡混合,在 25,200 x g(15,000 rpm) 下离心机混合 10 分钟。离心后,保存颗粒并丢弃超自然。
  9. 在保留的颗粒中,加入 1.8 mL 的甲醇,在 60 °C 的热块中孵育 20 分钟。然后,离心机在RT 10分钟25,200 x g(15,000 rpm)。离心后,丢弃超自然药物并保留颗粒(图2)。
  10. 每个示例再次重复步骤 2.9。
  11. 空气干燥在RT的颗粒或立即通过真空干燥进行。真空干燥使用真空干燥器在30°C 2至3小时或直到颗粒完全干燥。
    注意:此时可以通过通宵空气干燥或继续真空干燥来暂停实验。
  12. 干燥后,用干燥的颗粒称重样品管,并将重量记录在实验室笔记本中各自的空管重量旁边。通过减去两个值来估计颗粒重量。这些重量将用于木质素提取过程结束时的木质素估计。
  13. 此时的木质素提取,包括用于生成木质素标准曲线的商业竹木质素。将商用竹木质素测量成从0.5毫克到5毫克不等的单独管,增量0.5毫克(0.5毫克、1毫克、1.5毫克、2毫克、3毫克、3.5毫克、4毫克、4.5毫克和5.0毫克)。测量每个浓度三次,进行三次技术复制。
    注意:从这里开始,上述步骤中测量的标准的处理方式与干燥的样品相同。

3. 用TGA和酸处理颗粒以沉淀木质素

  1. 将上述步骤的处理样品以及测量标准,进行 TGA(硫二甲酸)处理。
  2. 在每个颗粒中加入 1 mL 的 3 N HCl (表 1)和 100 μL 的 TGA。
  3. 在 80 °C 预热热块中涡流和孵育,在烟罩中孵育 3 小时(图 2)。
    注意:必须监控 80 °C 的加热步骤。高压积聚可能会打开盖子,并可能导致化学品泄漏。建议使用螺丝帽管,但在此步骤中可以松散地封顶 2 mL 管,以防止此类溢出。
  4. 孵化后,在RT冷却管10-15分钟,离心机在25,200 x g(15,000 rpm)10分钟在RT。
    注:酸和有机溶剂产生的废物必须分离并储存在带通风盖的玻璃容器中。使用单独的玻璃容器收集TGA酸废物和酸废物。
  5. 离心后,丢弃超自然药物并保留颗粒。加入1mL的水,通过漩涡混合,离心机在25,200 x克(15,000 rpm)在RT 10分钟。
  6. 离心后,丢弃超自然体,在37°C摇床/热搅拌机的低速下将颗粒混合在1 N NaOH中24小时(图2)。
    注:这个孵化时间可以缩短到1小时7。
  7. 孵化后,在RT.将2mL微胶管在25,200 x g(15,000 rpm)处进行10分钟的离心机,为下一步保留超强分子。
    注:该程序涉及使用强酸和其他具有腐蚀性的化学物质。因此,在整个木质素估计过程中建议佩戴适当的PPP。TGA 有很强的难闻气味,在本质上是腐蚀性的。因此,建议仅在烟罩中使用。

4. 木质素降水

  1. 将超自然体转移到新的 2 mL 微富格管中,并在 4 °C 下加入 200 μL 的浓缩 HCl. 孵化剂,为期 4 小时或过夜(图 2)。
    注意:此时可以通过将制冷步骤延长到夜间来暂停提取过程。
  2. 离心机在RT 10分钟内25,200 x g(15,000 rpm),在1N NaOH的1mL中溶解颗粒。
  3. 在RT的摇床中孵育10分钟,在NaOH中完全悬挂颗粒。
  4. 最后,使用光谱仪测量样品在280纳米的吸收度,并与标准木质素曲线进行比较。
  5. 使用校准曲线回归线值测量木质素的未知浓度,并在 280 nm 时吸收提取的样品。

5. 样品中的标准曲线制备和木质素估计

  1. 处理木质素标准的方式与TGA治疗的实验样本相同。
  2. 以0.5毫克、1毫克、1.5毫克、2毫克、2.5毫克、3.0毫克、3.5毫克、4.0毫克、4.5毫克和5毫克为起点,以0.5毫克为增量测量商业竹木质素标准。然后,由TGA,HCl,溶解在1 N NaOH,然后测量吸收在280纳米(图3A)。
  3. 使用木质素浓度值和吸收读数生成标准木质素曲线的零散图(图 3B)。
  4. 使用散射图中生成的回归线 y = mx+c,使用提取样品的平均吸收量在 280 nm 和"m"和"c"值中从木质素标准曲线回归线中估计已提取样品的未知木质素含量。" x" 值。
  5. 将木质素含量除以真空/空气干燥植物生物质样品的总重量,在mg中提取甲醇(约15毫克),以获得每毫克的木质素浓度。然后,将此值乘以 100 以计算每毫克的木质素百分比。

结果

比较了两条不同的棉花实验线,以弥补不同组织中木质素含量的差异。每个样本提取的木质素含量测量为280纳米,并记录其各自的吸收值。将每个生物复制品的平均吸收值与木质素标准曲线的回归线(表2,图3C)进行比较。回归线,y = mx + c,用于计算提取实验线、样本1和样品2的未知木质素含量。平均OD值的结果被替换在"x"中,而"m"和"c"值则从木质素标准曲线的...

讨论

木质素在植物生长发育中起着重要作用,最近已广泛研究生物燃料、生物能源和生物制品的应用。木质素富含芳香化合物,储存在所有血管植物的二级细胞壁中。它具有多种工业应用,如木板产品,生物分散剂,絮凝剂,聚氨酯泡沫和在电路板29,30,31的脂。大部分来自纸张和纸浆行业的木质素被作为废物释放或燃烧用于热生...

披露声明

作者宣称他们没有利益冲突。

致谢

我们感谢植物与土壤科学与棉花公司对这项研究的部分支持。

材料

NameCompanyCatalog NumberComments
BioSpectrophotometer kineticEppendorf kinetic6136000010For measuring absorbance at 280 nm
CentrifugeEppendorf5424For centrifuging  samples
Commercial bamboo ligninAldrich1002171289Used in the preparation of the standard curve
Distilled waterFischer Scientific16690382Used in the protocol
Falcon tubesVWR734-0448Containers for solutions
Freezer millSpex Sample Prep68-701-15For fine grinding of plant tissue samples
Heat block/ Thermal mixerEppendorf13527550For temperature controlled steps during lignin extraction
Hotplate stirrerWalterWP1007-HSUsed for preparation of solutions
Hydrochloric acid (HCL)Sigma221677Used in the protocol
IncubatorFisherbrand150152633For thorough drying of plant tissue samples
Measuring scaleMettler toledo30243386For measuring plant tissue weight, standards and microfuge tubes
Methanol (100 %)Fischer Scientific67-56-1Used in the protocol
Microfuge tubes (2 mL)MicrocentrifugeZ628034-500EAContainers for extraction of lignin
Plant biomass gerinderHanchenAmazonUsed for crushing dried samples
pH meterFisher ScientificAE150Measuring pH for solutions prepared for lignin extraction
Temperature controlled incubator/ovenFisher Scientific15-015-2633Used in the protocol
Thioglycolic acid (TGA)Sigma Aldrich68-11-1Used in the protocol
Vacuum dryerEppendorf22820001Used for drying samples
Vortex mixerEppendorf3340001For proper mixing of samples

参考文献

  1. Freudenberg, K., Neish, A. C. . Constitutionand Biosynthesis of Lignin. , 129 (1968).
  2. Chio, C., Sain, M., Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews. 107, 232-249 (2019).
  3. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., Barta, K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews. 118, 614-678 (2018).
  4. Xu, F., Sun, R. C. . Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. , 9-47 (2010).
  5. Liu, Q., Luo, L., Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sciences. 19, 335 (2018).
  6. Ithal, N., et al. Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Molecular Plant-Microbe Interactions. 20, 510-525 (2007).
  7. Moura, J. C. M. S., et al. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. Journal of Integrative Plant Biology. 52, 360-376 (2010).
  8. Vanholme, R., Morreel, K., Ralph, J., Boerjan, W. Lignin engineering. Current Opinion In Plant Biology. 11, 278-285 (2008).
  9. Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., Henry, R. J. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews. 49, 871-906 (2015).
  10. Mendu, V., et al. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnology for Biofuels. 4, 43 (2011).
  11. Shrotri, A., Kobayashi, H., Fukuoka, A., Song, C. . Advances in Catalysis. 60, 59-123 (2017).
  12. Brunow, G. . Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. 2, 151-163 (2008).
  13. Constant, S., et al. New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chemistry. , (2016).
  14. Shimada, N., Tsuyama, T., Kamei, I. Rapid Determination of Thioglycolic Acid Lignin for Various Biomass Samples. Mokuzai Gakkaishi. 65, 25-32 (2019).
  15. Li, X., Weng, J. K., Chapple, C. Improvement of biomass through lignin modification. The Plant Journal: For Cell and Molecular Biology. 54, 569-581 (2008).
  16. Ponnusamy, V. K., et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology. 271, 462-472 (2019).
  17. Hatfield, R., Fukushima, R. S. Can Lignin Be Accurately Measured. Crop Science. 45, 832-839 (2005).
  18. Bolker, H., Somerville, N. Ultraviolet spectroscopicstudies of lignin in solid state. I. Isolated lignin preparations. Tappi Journal. 72, 826-829 (1962).
  19. Fergus, B. J., Goring, D. A. I. The distribution of lignin in birchwood as determined by ultraviolet microscopy. Holzforschung. 24, 118-124 (1970).
  20. Schultz, T. P., Templeton, M. C., McGinnis, G. D. Rapid determination of lignocellulose by diffuse reflectance Fourier transform infrared spectrometry. Analytical Chemistry. 57, 2867-2869 (1985).
  21. Dence, C. W., Lin, S. Y., Dence, C. W. The Determination of Lignin. Methods in Lignin Chemistry. , (1992).
  22. Adler, E. Lignin chemistry-past, present and future. Wood Science and Technology. 11, 169-218 (1977).
  23. Brinkmann, K., Blaschke, L., Polle, A. Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. Journal of Chemical Ecology. 28, 2483-2501 (2002).
  24. Pandey, M. P., Kim, C. S. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology. 34, 29-41 (2011).
  25. Moreira-Vilar, F. C., et al. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS One. 9, 110000 (2014).
  26. Hatfield, R. D., Grabber, J., Ralph, J., Brei, K. Using the Acetyl Bromide Assay To Determine Lignin Concentrations in Herbaceous Plants: Some Cautionary Notes. Journal of Agricultural and Food Chemistry. 47, 628-632 (1999).
  27. Suzuki, S., et al. High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnology. 26, 337-340 (2009).
  28. Nakatsubo, F., Tanahashi, M., Higuchi, T. Acidolysis of Bamboo Lignin II : Isolation and Identification of Acidolysis Products. Wood research. 53, 9-18 (1972).
  29. Aro, T., Fatehi, P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem. 10, 1861-1877 (2017).
  30. Frei, M. Lignin: Characterization of a Multifaceted Crop Component. The Scientific World Journal. 2013, 436517 (2013).
  31. Lora, J. H., Glasser, W. G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. Journal of Polymers and the Environment. 10, 39-48 (2002).
  32. Wang, R., Zhou, B., Wang, Z. Study on the Preparation and Application of Lignin-Derived Polycarboxylic Acids. Journal of Chemistry. 2019, 5493745 (2019).
  33. Welker, C. M., et al. Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts. Energies. 8, 7654-7676 (2015).
  34. Mendu, V., et al. Global bioenergy potential from high-lignin agricultural residue. Proceedings of the National Academy of Sciences. 109, 4014-4019 (2012).
  35. Brinkmann, K., Blaschke, L., Polle, A. Comparison of Different Methods for Lignin Determination as a Basis for Calibration of Near-Infrared Reflectance Spectroscopy and Implications of Lignoproteins. Journal of Chemical Ecology. 28, 2483-2501 (2002).
  36. Moreira-Vilar, F. C., et al. The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS One. 9, 110000 (2014).
  37. Iwaasa, A. D., Beauchemin, K. A., Acharya, S. N., Buchanan-Smith, J. G. Effect of stage of maturity and growth cycle on shearing force and cell wall chemical constituents of alfalfa stems. Canadian Journal of Animal Science. 76, 321-328 (1996).
  38. Arai-Sanoh, Y., et al. Genotypic Variations in Non-Structural Carbohydrate and Cell-Wall Components of the Stem in Rice, Sorghum, and Sugar Vane. Bioscience, Biotechnology, and Biochemistry. , 1105072478 (2011).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

173

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。