Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a modified TGA method for estimation of lignin content in herbaceous plant biomass. This method estimates the lignin content by forming specific thioether bonds with lignin and presents an advantage over the Klason method, as it requires a relatively small sample for lignin content estimation.

Abstract

Lignin is a natural polymer that is the second most abundant polymer on Earth after cellulose. Lignin is mainly deposited in plant secondary cell walls and is an aromatic heteropolymer primarily composed of three monolignols with significant industrial importance. Lignin plays an important role in plant growth and development, protects from biotic and abiotic stresses, and in the quality of animal fodder, the wood, and industrial lignin products. Accurate estimation of lignin content is essential for both fundamental understanding of the lignin biosynthesis and industrial applications of biomass. The thioglycolic acid (TGA) method is a highly reliable method of estimating the total lignin content in the plant biomass. This method estimates the lignin content by forming thioethers with the benzyl alcohol groups of lignin, which are soluble in alkaline conditions and insoluble in acidic conditions. The total lignin content is estimated using a standard curve generated from commercial bamboo lignin.

Introduction

Lignin is one of the vital load-bearing components of plant cell walls and the second most abundant polymer on Earth1. Chemically, lignin is a crosslinked heteropolymer made up of high molecular weight complex phenolic compounds that form a natural renewable source of aromatic polymers and synthesis of biomaterials2,3. This natural polymer plays significant roles in plant growth, development, survival, mechanical support, cell wall rigidity, water transport, mineral transport, lodging resistance, tissue and organ development, deposition of energy, and protection from biotic and abiotic ....

Protocol

1. Preparation of plant samples

  1. Collect two-month-old cotton plants from the greenhouse (Figure 1A).
  2. Flip plant pots gently to separate soil and roots with intact lateral roots by loosening the soil around the plant (Figure 1B).
  3. Wash the collected plants thoroughly in trays filled with water to remove all the dirt (for root samples) (Figure 1C).
  4. Use paper towels to dry separated root, stem, .......

Representative Results

Two different cotton experimental lines were compared for differences in their lignin contents in different tissues. The extracted lignin content of each sample was measured at 280 nm and recorded its respective absorbance values. The average absorbance values of each biological replicate were compared against the regression line of the lignin standard curve (Table 2, Figure 3C). The regression line, y = mx + c, is used to calculate the unknown lignin content of the extracte.......

Discussion

Lignin plays a significant role in plant growth and development and recently has been extensively studied for biofuel, bioenergy and bioproduct applications. Lignin is rich in aromatic compounds that are stored in all vascular plant secondary cell walls. It has several industrial applications such as wood panel products, bio dispersants, flocculants, polyurethane foams and in resins of circuit boards29,30,31. Most of the lignin .......

Acknowledgements

We thank the Department of Plant & Soil Science and Cotton Inc. for their partial support of this study.

....

Materials

NameCompanyCatalog NumberComments
BioSpectrophotometer kineticEppendorf kinetic6136000010For measuring absorbance at 280 nm
CentrifugeEppendorf5424For centrifuging  samples
Commercial bamboo ligninAldrich1002171289Used in the preparation of the standard curve
Distilled waterFischer Scientific16690382Used in the protocol
Falcon tubesVWR734-0448Containers for solutions
Freezer millSpex Sample Prep68-701-15For fine grinding of plant tissue samples
Heat block/ Thermal mixerEppendorf13527550For temperature controlled steps during lignin extraction
Hotplate stirrerWalterWP1007-HSUsed for preparation of solutions
Hydrochloric acid (HCL)Sigma221677Used in the protocol
IncubatorFisherbrand150152633For thorough drying of plant tissue samples
Measuring scaleMettler toledo30243386For measuring plant tissue weight, standards and microfuge tubes
Methanol (100 %)Fischer Scientific67-56-1Used in the protocol
Microfuge tubes (2 mL)MicrocentrifugeZ628034-500EAContainers for extraction of lignin
Plant biomass gerinderHanchenAmazonUsed for crushing dried samples
pH meterFisher ScientificAE150Measuring pH for solutions prepared for lignin extraction
Temperature controlled incubator/ovenFisher Scientific15-015-2633Used in the protocol
Thioglycolic acid (TGA)Sigma Aldrich68-11-1Used in the protocol
Vacuum dryerEppendorf22820001Used for drying samples
Vortex mixerEppendorf3340001For proper mixing of samples

References

  1. Freudenberg, K., Neish, A. C. . Constitutionand Biosynthesis of Lignin. , 129 (1968).
  2. Chio, C., Sain, M., Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews. 107

Explore More Articles

Plant BiomassLignin ContentThioglycolic Acid TGALignin EstimationAlcohol Insoluble ExtractLignin PrecipitationLignin Standard CurveBiomass GrinderFreezer MillVacuum Drying

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved