JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本手稿提供了一种开发称为肌肉袖带再生周围神经接口 (MC-RPNI) 的生物周围神经接口的创新方法。 这种手术结构可以放大其相关周围神经的运动传出信号,以促进运动意图的准确检测和外骨骼装置的潜在控制。

摘要

机器人外骨骼最近在康复医学领域获得了赞誉,成为四肢无力个体功能恢复的一种有前途的方式。然而,它们的使用仍然主要局限于研究机构,由于运动检测方法仍然不可靠,它们经常作为静态肢体支持的手段。周围神经接口已成为这一缺点的潜在解决方案;然而,由于其固有的振幅很小,这些信号很难与背景噪声区分开来,从而降低了它们的整体电机检测精度。由于目前的界面依赖于非生物材料,随着时间的推移,固有的材料分解可能会随着异物组织反应而发生,从而进一步影响其准确性。 肌肉袖带再生周围神经接口(MC-RPNI)旨在克服这些明显的并发症。由一段围绕圆周固定在完整周围神经上的游离肌肉移植物组成,随着时间的推移,该结构再生并被所包含的神经重新支配。在大鼠中,这种结构已经证明能够通过产生复合肌肉动作电位(CMAPs)将周围神经的运动传出动作电位放大到正常值的100倍。这种信号放大有助于高精度检测电机意图,从而有可能可靠地利用外骨骼设备。

引言

仅在美国,就有大约 1.3 亿人受到神经肌肉和肌肉骨骼疾病的影响,每年的经济影响超过 8000 亿美元12。这组疾病通常继发于神经系统内、神经肌肉接头或肌肉本身的病理学3。尽管病理起源多种多样,但大多数人都有一定程度的肢体无力13。不幸的是,鉴于神经和肌肉组织再生的局限性,这种弱点通常是永久性的,特别是在严重创伤的情况下456

四肢无力治疗算法通常侧重于康复和支持措施,通常依赖于利用剩余完整肢体(手杖、轮椅等)的能力。7. 然而,对于那些弱点不仅限于单一肢体的人来说,这种策略是不够的。随着机器人技术的最新创新,已经开发出先进的外骨骼设备,可以恢复四肢无力患者的肢体功能8910,111213这些机器人外骨骼通常是动力的可穿戴设备,可以帮助启动和终止运动或维持肢体位置,提供不同数量的力,可以为用户量身定制89,10111213.这些设备根据它们如何向用户提供运动辅助分为被动或主动:有源设备包含增强用户功率的电动执行器,而无源设备存储来自用户运动的能量,以便在必要时将其释放回用户14.由于有源设备具有增加用户功率能力的能力,因此在肢体无力的情况下,这些设备被更频繁地使用[14]。

为了确定该人群中的运动意图,现代外骨骼通常依赖于从远端肢体肌肉8、151617 的肌电图 (EMG) 或大脑表面脑电图 (sEEG)181920 生成的模式识别算法。.尽管这些检测方式很有希望,但这两种选择都有明显的局限性,阻碍了这些设备的广泛使用。由于sEEG通过经颅检测微伏级信号1819,20因此批评经常集中在无法将这些信号与背景噪声区分开来21上。当背景噪声与所需的记录信号相似时,会产生低信噪比(SNR),导致电机检测和分类不准确2223。准确的信号检测还依赖于稳定的低阻抗头皮接触21,这可能会受到粗/浓毛的存在,用户活动甚至出汗2224的显着影响。相比之下,EMG信号的幅度要大几个数量级,有利于更高的电机信号检测精度15,1825然而,这是有代价的,因为附近的肌肉会污染信号,降低设备16,17,25能够控制的自由度,并且无法检测到深层肌肉运动25,262728最重要的是,当存在明显的肌肉损伤和完全没有组织时,肌电图不能用作控制方法29

为了推进机器人外骨骼的发展,需要一致和准确地检测目标用户的运动意图。利用周围神经系统的接口因其相对简单的访问和功能选择性而作为一种有前途的接口技术出现。目前的周围神经接口方法可以是侵入性的或非侵入性的,通常属于以下三类之一:神经外电极30,31,32,33,束内电极34,35,36和穿透电极37,383940.由于周围神经信号通常处于微伏级,因此很难将这些信号与类似幅度的背景噪声4142区分开来这降低了接口的整体电机检测精度能力。这些低信噪比(SNR)通常会随着时间的推移而恶化,继发于电极阻抗43恶化,这是由设备3943的降解或局部异物反应在设备周围产生疤痕组织和/或局部轴突变性3744引起的。虽然这些缺点通常可以通过再次手术和植入新的周围神经接口来解决,但这不是一个可行的长期解决方案,因为异物相关反应会继续发生。

为了避免周围神经与非生物界面相互作用产生的这些局部组织反应,需要包含生物成分的界面。为了解决这一缺点,开发了再生周围神经接口(RPNI),以将横断的周围神经整合到带有假肢装置的截肢患者的残肢中45,464748RPNI 的制造涉及将横断的周围神经手术植入一段自体游离肌移植物中,随着时间的推移发生血运重建、再生和神经再支配。通过生成毫伏级复合肌肉动作电位(CMAP),RPNI能够将其包含的神经的微伏级信号放大几个数量级,从而有助于准确检测运动意图454849。在过去的十年中,RPNI有了相当大的发展,在动物5051和人类47试验中,在放大和传输传出运动神经信号方面取得了显着成功促进了具有多个自由度的高精度假肢装置控制。

四肢无力但周围神经完整的个体同样受益于通过周围神经接口高精度检测运动意图,以控制外骨骼装置。由于RPNI是为与横断的周围神经(例如截肢患者)整合而开发的,因此需要手术修改。根据RPNI的经验,开发了肌肉袖带再生周围神经接口(MC-RPNI)。它由与RPNI相似的游离肌肉移植段组成,而是在周围固定在完整的周围神经上(图1)。随着时间的推移,它通过侧支轴突发芽再生并重新支配,将这些传出运动神经信号放大并转化为大几个数量级的肌电图信号52。由于MC-RPNI起源于生物学,因此它避免了目前使用的周围神经接口不可避免的异物反应52。此外,MC-RPNI赋予了同时控制多个自由度的能力,因为它们可以放置在远端解剖的神经上,没有明显的串扰,正如之前在RPNIs49中证明的那样。最后,MC-RPNI可以独立于远端肌肉功能运行,因为它位于近端神经上。鉴于其相对于当前周围神经接口的优势,MC-RPNI有望提供一种安全,准确和可靠的外骨骼控制方法。

研究方案

所有动物程序和实验均在密歇根大学动物机构护理和使用委员会(IACUC)的批准下进行。3-6个月大的雄性和雌性Fischer F344和Lewis大鼠(~200-300g)在实验中最常使用,但理论上可以使用任何菌株。如果使用供体大鼠而不是自体肌肉移植,供体大鼠必须与实验菌株同质。允许大鼠在术前和术后自由获得食物和水。终末终点评估后,在深度麻醉下进行安乐死,心内注射氯化钾,然后采用双侧气胸的辅助方法。

1.大鼠的实验制备

  1. 在诱导室中以0.8-1.0L / min的速度使用5%异氟醚在氧气中的溶液麻醉实验大鼠。一旦达到足够的麻醉并在没有角膜反射的情况下确认,将大鼠放在复呼吸器鼻锥上,异氟醚降低至1.75%-2.25%以维持麻醉。
  2. 在0.2 mL无菌盐水中注射0.02-0.03 mL卡洛芬(50 mg / mL)溶液,并在肩胛骨之间的皮下平面上注射27 G针,用于围手术期和术后镇痛。
  3. 在双眼上涂抹无菌眼膏,以防止麻醉时角膜溃疡。
  4. 使用电动剃须刀剃除双侧下肢的外侧部分,从髋关节延伸到大腿,再到爪背表面。
  5. 首先用酒精制备垫擦拭手术部位,然后使用聚维酮碘溶液,最后用新的酒精制备垫进行最后一次清洁,以去除残留的聚维酮碘溶液。重复这种交替清洁过程三次以保持无菌。
    注意:这可能是皮肤病刺激物;确保删除大部分解决方案。

2.肌肉移植的准备

  1. 将大鼠放在手术显微镜下方的加热垫上,并带有用于体温监测的口内体温探头。将异氟醚维持在1.75%-2.25%,氧气保持在0.8-1.0升/分钟。
  2. 用#15手术刀沿着所需供体后肢的前侧做一个纵向切口,从脚踝上方延伸到膝盖下方。
  3. 使用锋利的虹膜剪刀解剖下面的皮下组织,以暴露踝关节近端的底层肌肉组织和远端肌腱。胫骨前部(TA)是最大和最前部的肌肉;指长伸肌(EDL)可以在该肌肉的深处和后部找到。将 EDL 肌肉及其远端肌腱与周围肌肉组织隔离开来。
  4. 通过将镊子或虹膜剪刀的两个尖齿插入踝关节近端的远端肌腱下方,确保隔离正确的肌腱。通过打开镊子或虹膜剪刀对肌腱施加向上压力。这种运动应该同时产生所有脚趾的同时伸展。如果发生孤立性踝关节背屈、踝关节外翻或单趾背屈,则已隔离错误的肌腱。
  5. 用锋利的虹膜剪刀在踝关节水平处对EDL肌肉进行远端肌腱切开术,并将肌肉从周围组织中剥离出来,朝近端朝其肌腱起源工作。
  6. 一旦看到近端肌腱,使用锋利的虹膜剪刀进行近端肌腱切开术以释放移植物。
  7. 修剪肌肉移植物的两端,并用锋利的虹膜剪刀切成所需的长度。
    注意:8-13毫米的移植物已成功使用;但是,最常用的长度是 10 毫米。
  8. 在肌肉移植物的一侧,沿着整个修剪的长度做一个纵向切口,以促进神经在肌肉移植物内的位置,并使神经与肌内膜接触。
  9. 将准备好的肌肉移植物放在盐水润湿的纱布中,以防止组织干燥。
  10. 以运行方式用4-0铬缝合线关闭覆盖供体部位的皮肤。

3.腓总神经隔离与制备

  1. 标记手术切口,该切口将从坐骨神经切口延伸~5毫米,延伸到膝关节下方。确保该标记低于下方可触诊的股骨,并且与股骨成一定角度。
  2. 用#15刀片沿着标记的切口线切开皮肤和皮下组织。小心切开下面的股二头肌筋膜,注意不要延伸到整个肌肉深度,因为坐骨神经就在下方。
  3. 使用钝尖小剪刀或止血器,仔细解剖股二头肌。
    注意:坐骨神经在二头肌下方的这个空间中移动,方向与皮肤上标记的切口大致相同。坐骨神经有三个值得注意的分支:腓肠神经分支(神经的最后部和最小神经),胫骨神经(通常最前方,但该神经总是深入膝关节)和腓总神经(通常位于胫骨和腓骨之间,总是在膝关节上方行进)。
  4. 识别腓总(CP)神经,并使用一对微型镊子和微型剪刀小心地将其与周围神经隔离。从神经中间 2 cm 处去除任何周围的结缔组织。在此过程中注意不要用镊子压碎CP神经,因为挤压伤会改变终点结果。
  5. 在游离的CP神经的最中央部分,通过沿与所需肌肉移植长度相匹配的神经长度去除25%的外神经来执行神经外膜窗口。
  6. 为此,用微镊子握住近端外神经,用显微解剖剪刀切入紧靠下方的外神经膜,并切除沿神经远端行进的~25%的外神经。注意将这一段整体移除,因为多次尝试会导致不规则的外神经切除,增加神经损伤的风险。
    注意:表外神经下部的神经组织将具有粘稠的质地;注意这种神经质量可确保去除正确的组织平面。

4. MC-RPNI结构制造

  1. 从盐水润湿的纱布上取下肌肉移植物,并将其放置在产生神经外膜窗口的CP神经中央部分下方。将神经旋转 180°,使神经外膜窗口部分接触完整的肌肉,并且不会支撑最终的缝合线。
  2. 使用 8-0尼龙缝合线,使用简单的间断缝线将CP神经的外神经在步骤2.8中创建的凹槽内的肌肉移植物近端和远端缝合,以将表外神经固定到肌内膜。
    注意:放置这些缝线,确保肌肉处于正常的静息长度。过度拉伸或压缩肌肉会影响以后的再生和信号传导能力。
  3. 使用简单的中断 8-0 将围绕现在固定的神经和缝合线的肌肉移植边缘圆周包裹到位尼龙针迹(~4-6,取决于长度)。
  4. 一旦达到止血效果,用5-0的染色缝合线将股二头肌筋膜封闭在结构上。
  5. 用4-0的彩色缝合线以跑步方式关闭覆盖的皮肤。
  6. 用酒精准备垫清洁手术区域并涂抹抗生素软膏。
  7. 终止吸入麻醉剂并将大鼠置于与笼友隔离的干净笼子中,并允许 食物和水随意恢复。
  8. 一旦老鼠适当恢复,将其与笼子伙伴一起放回干净的笼子里。
    注意:这些结构至少需要三个月的成熟才能产生足够的神经信号放大。

结果

如果大鼠在手术后一周内无法从手术麻醉中存活或发生感染,则 MC-RPNI 手术制造被认为是围手术期失败。先前的研究表明,3个月的成熟期将导致该结构42454849的可靠信号放大。在那时或之后,可能会发生结构的手术暴露和评估。如果MC-RPNI制造成功,血运重建肌肉应该在原始MC-RPNI植入部位很容?...

讨论

MC-RPNI是一种新颖的结构,可以放大完整的外周运动神经的传出动作电位,以便精确控制外骨骼装置。具体来说,MC-RPNI为那些由严重的肌肉疾病和/或肌肉缺失引起的四肢无力的个体提供了特别的好处,而肌电图信号无法记录。减少已经受损的肌肉功能在这个人群中将是毁灭性的;然而,MC-RPNI能够提供这种神经信号放大,而不会损害远端神经支配的肌肉52 (表1...

披露声明

作者没有披露。

致谢

作者感谢Jana Moon的专业实验室管理和技术援助,以及Charles Hwang的成像专业知识。本文中的实验部分由整形外科基金会资助SS(3135146.4)以及国家儿童健康与人类发展研究所(奖励号为1F32HD100286-01)资助给SS,以及美国国立卫生研究院国家关节炎,肌肉骨骼和皮肤病研究所,奖励号为P30 AR069620。

材料

NameCompanyCatalog NumberComments
#15 ScalpelAspen Surgical, IncRef 371115Rib-Back Carbon Steel Surgical Blades (#15)
2-N-thin film load cell (S100)Strain Measurement Devices, IncSMD100-0002Measures force generated by the attached muscle
4-0 Chromic SutureEthiconSKU# 1654GP-3 Reverse Cutting Needle
5-0 Chromic SutureEthiconSKU# 687GP-3 Reverse Cutting Needle
8-0 Monofilament SutureAROSurgicalT06A08N14-13Black polyamide monofilament suture on a threaded tapered needle
Experimental RatsEnvigoF344-NH-sdRats are Fischer F344 Strain
Fine Forceps - mirror finishFine Science Tools11413-11Fine tipped forceps with mirror finish ideal for handling delicate structures like nerves
Fluriso (Isofluorane)VetOne13985-528-40Inhalational Anesthetic
Force Measurement JigRed Rockn/aCustom designed force measurement jig that allows for immobilization of hindlimb to allow for accurate muscle force recording
MATLAB softwareMathworks, IncPR-MATLAB-MU-MW-707-NNUCalculates active force for each recorded force trace from passive and total force measurements
Nicolet Viasys EMG EP SystemNicoletMFI-NCL-VIKING-SELECT-2CH-EMGPortable EMG and nerve signal recording system capable of simultaneous 2 channel recordings from nerve and/or muscle
OxygenCryogenic GasesUN1072Standard medical grade oxygen canisters
Potassium ChlorideAPP Pharmaceuticals63323-965-20Injectable form, 2 mEq/mL
Povidone Iodine USPMediChoice65517-0009-110% Topical Solution, can use one bottle for multiple surgical preps
Puralube Vet Opthalmic OintmentDechra17033-211-38Corneal protective ointment for use during procedure
Rimadyl (Caprofen)Zoetis, Inc.NADA# 141-199Injectable form, 50 mg/mL
Stereo MicroscopeLeicaModel M60User can adjust magnification to their preference
Surgical InstrumentsFine Science ToolsVariousUser can choose instruments according to personal preference or from what is currently available in their lab
Triple Antibiotic OintmentMediChoice39892-0830-2Ointment comes in sterile, disposable packets
Vannas Spring Scissors - 2mm cutting edgeFine Science Tools15000-04Curved micro-dissection scissors used to perform the epineurial window
VaporStick 3SurgivetV7015Anesthesia tower with space for isofluorane and oxygen canister
Webcol Alcohol PrepCovidenRef 6818Alcohol prep wipes; use a new wipe for each prep

参考文献

  1. Andersson, G. S. The burden of musculoskeletal diseases in the United States : prevalence, societal, and economic cost. American Academy of Orthopaedic Surgeons. , (1942).
  2. Yelin, E. H., Weinstein, S., King, T. The burden of musculoskeletal diseases in the United States. Seminars in Arthritis and Rheumatism. 46 (3), 259-260 (2016).
  3. McDonald, C. M. Clinical Approach to the Diagnostic Evaluation of Hereditary and Acquired Neuromuscular Diseases. Physical Medicine and Rehabilitation Clinics of North America. 23 (3), 495-563 (2021).
  4. Sass, F. A., et al. Immunology Guides Skeletal Muscle Regeneration. International Journal of Molecular Sciences. 19 (3), 835 (2018).
  5. Bruggeman, K. F., et al. Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology. 176 (3), 355-368 (2019).
  6. Vijayavenkataraman, S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia. 106, 54-69 (2020).
  7. O'Dell, M. W., Lin, C. C., Harrison, V. Stroke rehabilitation: strategies to enhance motor recovery. Annual Review of Medicine. 60, 55-68 (2009).
  8. Ambrosini, E., et al. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project. International Conference on Rehabilitation Robotics (ICORR). , 56-61 (2017).
  9. Veerbeek, J. M., et al. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabilitation & Neural Repair. 31 (2), 107-121 (2017).
  10. Heo, P., et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering. Journal of Precision Engineering and Manufacturing. 13 (5), 807-824 (2012).
  11. Kwakkel, G., Kollen, B. J., Krebs, H. I. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation & Neural Repair. 22 (2), 111-121 (2007).
  12. Brewer, B. R., McDowell, S. K., Worthen-Chaudhari, L. C. Poststroke Upper Extremity Rehabilitation: A Review of Robotic Systems and Clinical Results. Topics in Stroke Rehabilitation. 14 (6), 22-44 (2007).
  13. Kalita, B., Narayan, J., Dwivedy, S. K. Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review. International Journal of Social Robotics. 13, 775-793 (2021).
  14. Bosch, T., et al. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics. 54, 212-217 (2016).
  15. Secciani, N., et al. A novel application of a surface ElectroMyoGraphy-based control strategy for a hand exoskeleton system: A single-case study. International Journal of Advanced Robotic Systems. 16 (1), 1729881419828197 (2019).
  16. Bützer, T., et al. PEXO - A pediatric whole hand exoskeleton for grasping assistance in task-oriented training. IEEE 16th International Conference on Rehabilitation Robotics (ICORR). , 108-114 (2019).
  17. Meeker, C., et al. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. IEEE International Conference on Rehabilitation Robotics (ICORR). , 1203-1210 (2017).
  18. Witkowski, M., et al. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Journal of NeuroEngineering and Rehabilitation. 11 (1), 165 (2014).
  19. Cantillo-Negrete, J., et al. Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. Journal of Healthcare Engineering. 2018, 1624637 (2018).
  20. Bhagat, N. A., et al. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Frontiers in Neuroscience. 10, 122 (2016).
  21. Habibzadeh Tonekabony Shad, E., Molinas, M., Ytterdal, T. Impedance and noise of passive and active dry EEG electrodes: A review. IEEE Sensors Journal. 20 (24), 14565-14577 (2020).
  22. Tariq, M., Trivailo, P. M., Simic, M. EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in Human Neuroscience. 12, 312-312 (2018).
  23. Gwin, J. T., Ferris, D. High-density EEG and independent component analysis mixture models distinguish knee contractions from ankle contractions. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011, 4195-4198 (2011).
  24. Tariq, M., Trivailo, P. M., Simic, M. Classification of left and right foot kinaesthetic motor imagery using common spatial pattern. Biomedical Physics & Engineering Express. 6 (1), 015008 (2019).
  25. Ryser, F., et al. Fully embedded myoelectric control for a wearable robotic hand orthosis. iInternational Conference on Rehabilitation Robotics (ICORR). , 615-621 (2017).
  26. Reeves, J., Starbuck, C., Nester, C. EMG gait data from indwelling electrodes is attenuated over time and changes independent of any experimental effect. Journal of Electromyography and Kinesiology. 54, 102461 (2020).
  27. Huang, J., et al. Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Transactions on Automation Science and Engineering. 12 (4), 1257-1270 (2015).
  28. Rodrigues, C., et al. Comparison of intramuscular and surface electromyography recordings towards the control of wearable robots for incomplete spinal cord injury rehabilitation. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). , 564-569 (2020).
  29. Rasool, G., et al. Spatial analysis of multichannel surface EMG in hemiplegic stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society. 25 (10), 1802-1811 (2017).
  30. Stieglitz, T., et al. Non-invasive measurement of torque development in the rat foot: measurement setup and results from stimulation of the sciatic nerve with polyimide-based cuff electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 11 (4), 427-437 (2003).
  31. Polasek, K. H., et al. Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 15 (1), 76-82 (2007).
  32. Kenney, L., et al. An implantable two channel drop foot stimulator: initial clinical results. Artificial Organs. 26 (3), 267-270 (2002).
  33. Ortiz-Catalan, M., et al. Patterned stimulation of peripheral nerves produces natural sensations with regards to location but not quality. IEEE Transactions on Medical Robotics and Bionics. 1 (3), 199-203 (2019).
  34. Boretius, T., et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosensors and Bioelectronics. 26 (1), 62-69 (2010).
  35. Petrini, F. M., et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Annals of Neurology. 8 (1), 137-154 (2019).
  36. Jung, R., et al. Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers. Bioelectronics in Medicine. 1 (1), 55-69 (2017).
  37. Christensen, M. B., et al. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomaterialia. 10 (11), 4650-4660 (2014).
  38. Zollo, L., et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Science Robotics. 4 (27), (2019).
  39. George, J. A., et al. Long-term performance of Utah slanted electrode arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles. Journal of Neural Engineering. 17 (5), 056042 (2020).
  40. Wendelken, S., et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. Journal of NeuroEngineering and Rehabilitation. 14 (1), 121 (2017).
  41. Yang, Z., et al. Noise characterization, modeling, and reduction for in vivo neural recording. Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS 09). , 2160-2168 (2009).
  42. Ursu, D. C., et al. In vivo characterization of regenerative peripheral nerve interface function. Journal of Neural Engineering. 13 (2), 026012 (2016).
  43. Lotti, F., et al. Invasive intraneural interfaces: Foreign body reaction issues. Frontiers in Neuroscience. 11, 497-497 (2017).
  44. Stiller, A. M., et al. A meta-analysis of intracortical device stiffness and its correlation with histological outcomes. Micromachines. 9 (9), 443 (2018).
  45. Kung, T. A., et al. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Plastic and Reconstructive Surgery. 133 (6), 1380-1394 (2014).
  46. Kubiak, C. A., Kemp, S. W. P., Cederna, P. S. Regenerative peripheral nerve interface for management of postamputation neuroma. JAMA Surgery. 153 (7), 681-682 (2018).
  47. Vu, P. P., et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Science Translational Medicine. 12 (533), (2020).
  48. Svientek, S. R., et al. Fabrication of the composite regenerative peripheral nerve interface (C-RPNI) in the adult rat. Journal of Visualized Experiments: JoVE. (156), e60841 (2020).
  49. Ursu, D., et al. Adjacent regenerative peripheral nerve interfaces produce phase-antagonist signals during voluntary walking in rats. Journal of NeuroEngineering and Rehabilitation. 14 (1), 33 (2017).
  50. Vu, P. P., et al. Closed-loop continuous hand control via chronic recording of regenerative peripheral nerve interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 26 (2), 515-526 (2018).
  51. Urbanchek, M. G., et al. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb. BioMed Research International. 2016, 5726730 (2016).
  52. Kubiak, C. A., et al. Physiologic signaling and viability of the Muscle Cuff Regenerative Peripheral Nerve Interface (MC-RPNI) for intact peripheral nerves. Journal of Neural Engineering. 18 (4), (2021).
  53. Rocha, J. A., et al. Diagnostic investigation and multidisciplinary management in motor neuron disease. Journal of Neurology. 252 (12), 1435-1447 (2005).
  54. Haastert, K., et al. Nerve repair by end-to-side nerve coaptation: histologic and morphometric evaluation of axonal origin in a rat sciatic nerve model. Neurosurgery. 66 (3), 567-576 (2010).
  55. Hayashi, A., et al. Collateral sprouting occurs following end-to-side neurorrhaphy. Plastic and Reconstructive Surgery. 114 (1), 129-137 (2004).
  56. Hu, Y., et al. Regenerative peripheral nerve interface free muscle graft mass and function. Muscle & Nerve. 63 (3), 421-429 (2021).
  57. Carr, M. M., et al. Strain differences in autotomy in rats undergoing sciatic nerve transection or repair. Annals of Plastic Surgery. 28 (6), 538-544 (1992).
  58. Sporel-Özakat, R. E., et al. A simple method for reducing autotomy in rats after peripheral nerve lesions. Journal of Neuroscience Methods. 36 (2), 263-265 (1991).
  59. Lemon, R. N., Mantel, G. W. H., Rea, P. A. Recording and identification of single motor units in the free-to-move primate hand. Experimental Brain Research. 81 (1), (1990).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

179 MC RPNI

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。