JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

开发了一种光片显微镜来对整个耳蜗进行成像和数字化。

摘要

耳聋是最常见的感觉障碍,根据世界卫生组织1,全球约有5%或4.3亿人受到影响。衰老或老年性聋是感音神经性听力损失的主要原因,其特征是毛细胞、螺旋神经节神经元 (SGN) 和血管纹受损。这些结构位于耳蜗内,耳蜗具有复杂的螺旋形膜组织解剖结构,悬浮在液体中并被骨包围。这些特性使得研究和量化组织病理学变化在技术上变得困难。为了满足这一需求,我们开发了一种光片显微镜(TSLIM),可以对整个耳蜗进行成像和数字化,以促进内耳结构 - 功能关系的研究。整个耳蜗对齐良好的连续切片会产生一堆图像,用于三维 (3D) 体积渲染和单个结构的分割,以进行 3D 可视化和定量分析(即长度、宽度、表面、体积和数量)。耳蜗需要最少的处理步骤(固定、脱钙、脱水、染色和光学清除),所有这些都与随后通过扫描和透射电子显微镜进行的高分辨率成像兼容。由于所有组织都存在于堆栈中,因此可以单独评估每个结构或相对于其他结构进行评估。此外,由于成像使用荧光探针,免疫组织化学和配体结合可用于识别特定结构及其在耳蜗内的3D体积或分布。在这里,我们使用TSLIM检查老年小鼠的耳蜗,以量化毛细胞和螺旋神经节神经元的损失。此外,高级分析(例如聚类分析)用于可视化罗森塔尔管中螺旋神经节神经元沿其3D体积的局部减少。这些方法证明了TSLIM显微镜量化耳蜗内部和耳蜗之间结构 - 功能关系的能力。

引言

耳蜗是哺乳动物听力的周围感觉器官。它具有重复的感觉和支持细胞的复杂螺旋解剖结构,这些细胞在解剖学上专门用于检测声音振动并将其传输到大脑以进行听觉感知。主要的感觉元素是内毛细胞和外毛细胞及其神经支配神经纤维,其细胞体构成螺旋神经节,位于罗森塔尔管内(图1)。这些感觉和神经结构按张力排列,使得高频声音在耳蜗基底转导,低频声音在耳蜗顶点转导2。沿支撑基底膜螺旋长度的这种感觉细胞分布的解剖图称为细胞耳蜗图3 ,可以与听力损失进行比较,听力图中显示的频率是函数。

耳蜗的膜性迷宫被致密的骨头包围,这使得一次检查多个耳蜗结构在技术上变得困难。因此,开发光片显微镜的基本原理是产生完整耳蜗的对齐良好的连续切片,以便在3D重建中可以相对检查所有耳蜗结构。Voie等人4 和Voie和Spelman5 设计了第一台光片显微镜,称为正交平面荧光光学切片(OPFOS)显微镜,用于光学切片整个耳蜗。然而,这种显微镜从未商业化开发;因此,我们的目标是构建一种称为薄片激光成像显微镜(TSLIM; 图2)。TSLIM的设计和施工细节之前已经公布了8。TSLIM对OPFOS进行了多项改进,包括使用低光数码相机与CCD相机进行图像采集,光学编码微定位器使标本通过光片准确且可重复地移动,使用市售的光学透明标本室,以及罗丹明在乙醇而不是透明溶液中染色以防止染色剂在组织内沉淀。SPIM6 等光片显微镜的商业开发侧重于活体小型透明标本的高分辨率成像,但由于缺乏足够的工作距离,因此不适合整个耳蜗成像。Santi7发表了对其他光片显微镜开发的综述。与其他组织学方法相比,TSLIM检查耳蜗的主要优势是光学切片组织以进行3D重建,同时保持标本的完整性,以便其他组织学方法可以使用。TSLIM成像的另一个优点是,与共聚焦显微镜中暴露于激光的整个组织厚度相比,只有激光产生的薄光片暴露在组织中。组织清除以最大限度地减少光散射,并且只有一小部分组织暴露于激光的事实导致光片激光成像的荧光染料褪色(光漂白)最小。然而,与活组织相比,固定、脱水和清除过程确实会改变耳蜗结构的形态并导致组织萎缩。实际发生的组织萎缩量未确定。

TSLIM由Shane Johnson和八名德国光学工程专业学生开发(见致谢)。TSLIM结构细节由Santi等人提供8,扫描版本(sTSLIM)由Schröter等人9提供。TSLIM可用作无损切片机,用于光学切片标本,并用作显微镜,通过耳蜗的整个宽度和厚度收集2D连续切片。TSLIM可以对小(毫米)和大(厘米)的厚标本进行成像。镜头采用空气安装,可在解剖显微镜上进行较长的工作距离,收集物镜分别为1倍和2倍。解剖显微镜还具有变焦光学元件,使TSLIM能够解析细胞上的亚细胞和突触结构。TSLIM配备了蓝色(473 nm)和绿色(532 nm)激光进行照明,允许使用各种荧光探针进行成像。TSLIM的目标是通过整个耳蜗产生对齐良好的2D光学切片,以实现耳蜗组织的完整数字重建。由于它是一种荧光方法,配体和免疫组织化学也可用于鉴定特定的耳蜗结构。

最初,柱面透镜用于产生两个相对的高斯光片,但它会产生吸收成像伪影。由于Keller等人的工作10,固定柱面透镜被扫描振镜镜取代,以产生光片9。此外,由于光片的中心在光束腰部最薄,因此sTSLIM 2D图像是通过在样品宽度上收集X轴数据列的组合来生成的(图3)。这种方法首先由Buytaert和Dircks11描述。用于驱动和收集图像的TSLIM定制软件是使用用于仪器控制的图形程序开发的。光片穿过标本并照亮组织内的荧光平面。该荧光平面通过透明标本正交投射,并通过解剖显微镜收集。光学编码的微定位器允许扫描X轴上的光束腰部以收集单个复合2D图像,随后,Z轴微定位器将标本移动到组织内的更深平面,以获得一堆连续的切片2D图像(视频1, 图4)。在耳蜗的整个宽度、厚度和长度上收集一堆平移图像,不需要拼接图像(视频 2)。图像堆栈被传输到另一台计算机并加载到3D渲染程序中以进行3D重建和量化。图像堆栈包含有关显微镜分辨率下耳蜗形态的所有数字信息。然而,如果需要更高的分辨率,完整的耳蜗可以通过破坏性的组织学方法进一步处理,如切片机切片、扫描和透射电子显微镜。

3D渲染程序用于分割不同的耳蜗结构,以进行3D渲染和定量分析。对于分割,通过图形输入板和笔使用不同的颜色跟踪堆栈的每个 2D 图像中的每个结构(图 5)。迄今为止,已经对20种不同的耳蜗结构进行了分割(图6)。分割后,可以执行各种3D分析。例如,3D渲染软件可以在结构质心的任何平面上虚拟地切除耳蜗。 视频 3 显示了与 Corti 器官相切的切片,它显示了沿基底膜长度的毛细胞。此过程首先需要手动分割感兴趣的结构。接下来,根据沿结构中心从其底部到顶点放置的样条点的最小二乘拟合来计算结构的质心,从而允许近似结构的长度(视频 4)。一种称为骨架化的类似过程可用于使用颜色图可视化结构沿其长度的径向宽度(视频 4)。每个结构的总体积在分割后由程序计算,但相对距离也可以在 3D 渲染软件中使用彩色图进行量化和可视化(图 7)。还可以导出分段结构以生成放大的实体塑料模型渲染(图 8)。此外,还可以使用 3D 渲染软件进行半自动细胞计数(图 9)。免疫组织化学和配体结合可用于染色特定的耳蜗结构,这些结构可以与其他耳蜗结构分离,以进行形态学评估,例如产生细胞耳蜗图(图10)。所有耳蜗结构的长度、宽度、表面、体积和数量都可以从 3D 模型中确定,这使得这种方法非常适合将耳蜗损伤映射到功能障碍。具体来说,由于衰老、噪音引起的创伤或其他侮辱引起的耳蜗损伤可以在 2D 光学切片的 3D 耳蜗重建中显示和量化。一旦耳蜗被数字化,有许多成像算法可用于评估解剖登记处耳蜗内任何组织对其他耳蜗组织的耳蜗损伤。

研究方案

所有程序和活体动物的使用均已由明尼苏达大学机构护理和使用委员会(IACUC)审查和批准(协议编号#2010-38573A),使用这些动物的研究人员在进入动物设施之前已经过研究动物资源(RAR)兽医的全面培训和测试。本研究均使用雄性和雌性小鼠。

1. 耳蜗去除固定和组织处理成像

  1. 使用CO2 吸入对小鼠实施安乐死。用剪刀将小鼠斩首,并通过大脑做一个背腹切口以使头骨半切。切除大脑,识别颅骨基底腹侧的圆形大疱,用圆疱打开大疱,观察并去除耳蜗。
  2. 固定:在通风橱下并使用解剖显微镜以5倍放大倍率执行此过程。戴手套和防护服。刺破椭圆形窗户并用锋利的镐取下镫骨。将镐插入圆窗以刺穿膜。
  3. 用连接到装有 2 mL 福尔马林的 1 mL 注射器的输液器的切口盖住打开的圆形窗口。在2分钟内通过耳蜗的外淋巴间隙缓慢注入福尔马林,注意福尔马林通过打开的椭圆形窗口 离开 耳蜗。修剪耳蜗上多余的组织,浸入含有10%福尔马林的瓶子中,然后放在旋转器上过夜。
  4. 脱钙:将耳蜗在PBS 3x中冲洗5分钟,然后浸入含有10%乙二胺四乙酸二钠溶液(EDTA)的瓶中旋转4天,每天更换溶液。
  5. 脱水:用PBS 3x灌注耳蜗,并在两次更换之间浸泡15分钟。用乙醇升序浓度10%,50%,70%,95%,95%,100%,100%使耳蜗脱水;每种浓度30分钟。
    注意:在脱水前去除所有EDTA很重要,因为EDTA会在乙醇中沉淀。此外,耳蜗可以在任何浓度大于70%的乙醇中过夜。
  6. 染色:将整个耳蜗浸入异硫辛酸罗丹明B溶液(5μg/ mL在100%乙醇中)旋转过夜。用两次100%乙醇的变化从耳蜗中去除多余的染料,每次变化5分钟。
  7. 清除:将染色的耳蜗转移到两次变化的Spalteholz12 溶液(5:3水杨酸甲酯:苯甲酸苄酯)中,每次变化30分钟,并在澄清溶液中旋转放置过夜。耳蜗可以无限期地留在斯帕特霍尔茨溶液中。

2. 耳蜗成像

  1. 将耳蜗连接到椭圆形和圆形窗膜端的标本杆上,使清除溶液保留在耳蜗内并且不会形成气泡(图2)。必须注意不要让耳蜗内形成气泡,因为它们难以去除,如果留在组织中,它们会导致成像伪影。
  2. 使用紫外线活化胶将湿耳蜗连接到干标杆上(图2)。将耳蜗连接到椭圆形和圆形窗口末端。用紫外线在耳蜗周围移动,将紫外线胶固化10秒。
    注意:耳蜗松动地连接到标本杆上会导致成像缺陷。该棒是专门为此协议制造的(有关详细信息,请参阅 Santi等人8),并且特定于我们的光片显微镜。
  3. 将耳蜗悬浮到装有Spalteholz溶液的成像室中进行成像。样品室是一个光学透明的石英荧光计电池(视频1)。
  4. 将试样杆连接到也连接到 XZ 平移台的旋转支架上。大多数堆栈是通过在XZ平面中平移试样获得的,但也可以获得旋转堆栈。
  5. TSLIM光学切片:根据荧光染料染色的类型,使用蓝色或绿色激光进行激发。将光片放置在组织的中间以进行聚焦,并确定将用于照亮耳蜗整个宽度的放大倍率。然后,使用定制设计的程序将标本穿过光片,在 X 轴上穿过标本(拼接图像)和 Z 步长,在整个耳蜗中制作一堆 2D 图像。
  6. 对于第一张图像,光片的光束腰部位于标本的边缘,程序扫描标本的整个宽度,收集数据列(参见图像拼接;Santi等人8)的宽度是共聚焦参数(图3)的宽度,以在整个标本宽度上产生最高分辨率的复合2D图像。该程序自动对每个 Z 步骤进行图像拼接,直到标本完全成像。
  7. 图像处理:将图像堆栈传输到另一台计算机,并将其加载到3D渲染程序中进行3D重建和量化。

结果

由于本期特刊的主题是成像耳蜗衰老的影响,因此将以年轻(3个月大,HS2479,CBA菌株小鼠)和老年(23个月大,HS2521,C57品系小鼠)耳蜗为例。应该注意的是,TSLIM能够对各种标本进行成像,包括来自人类,哺乳动物,其他啮齿动物和鱼类以及其他器官(例如大脑)的耳蜗。

Johnson等人13发表了一篇关于使用TSLIM在年轻(3周龄)CBA小鼠中加入SGN的文章。在五只...

讨论

通过光片显微镜进行光学切片以检查耳蜗结构不像其他更传统的组织学方法那样具有机械破坏性,并且它提供了耳蜗结构相对于彼此的完整数字视图。以前的方法,如Corti14 器官的表面制备提供了沿基底膜长度的毛细胞损失图,但无法评估SGN损失,因为组织已被解剖以揭示Corti的器官。或者,耳蜗的中模态切片切片仅提供整个罗森塔尔管长度的SGN状况的非常小样本。使用TSLIM,所?...

披露声明

作者没有什么可透露的。

致谢

这项研究得到了美国国立卫生研究院国家耳聋和其他沟通障碍研究所,凯洛格基金会的资助,以及Bridget Sperl和John McCormick的私人捐款。TSLIM是在来自德国伊尔梅瑙技术大学的Matthias Hillenbrand,Kerstin John,Meike Lawin,Michel Layher,Tobias Schroeter,Peter Schacht,Oliver Dannberg和Julian Wuester的出色协助下开发的,由他们的导师(Stefan Sinzinger和Rene Theska)和James Leger监督。

材料

NameCompanyCatalog NumberComments
Amira 3D Rendering SoftwareThermoFisher ScientificAddress: 501 90th Ave NW, Coon Rapids, MN 55433
benzyl benzoate (W213810)Sigma-Aldrich, Inc. Address: PO Box, 14508, St. Louis, MO 68178
Bondic Bondic Address: 235 Industrial Parkway S., Unit 18 Aurora, ON L4G 3V5 Canada
Ethanol 95% and 100% University of MinnesotaAddress: General Storehouse, Minneapolis, MN 55455
Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA)  (E5134)Sigma-Aldrich, Inc. Address: PO Box, 14508, St. Louis, MO 68178
LabVIEW graphical program and VisionNational InstrumentsAddress: 11500 N Mopac Expwy Austin, TX 78759-3504
methyl salicylate (M6742)Sigma-Aldrich, Inc. Address: PO Box, 14508, St. Louis, MO 68178
Olympus MVX10 dissection microscopeOlympus CorpAddress: 3500 Corporate Parkway, Center Valley, PA 18034
Rhodamine B isothiocynate, (283924) Sigma-Aldrich, Inc. Address: PO Box, 14508, St. Louis, MO 68178
Starna Flurometer Cell (3-G-20)Starna CellsAddress: PO Box 1919, Atascadero, CA 82423

参考文献

  1. Deafness and hearing loss. World Health Organization Available from: https://www.who.int/news-room/fact-sheets/deafness-and-hearing-loss (2021)
  2. Vater, M., Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hearing Research. 273 (1-2), 89-99 (2011).
  3. Santi, P. A., Blair, A., Bohne, B. A., Lukkes, J., Nietfeld, J. The digital cytocochleogram. Hearing Research. 192 (1-2), 75-82 (2004).
  4. Voie, A. H., Burns, D. H., Spelman, F. A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. Journal of Microscopy. 170, 229-236 (1993).
  5. Voie, A. H., Spelman, S. A. Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Computerized Medical Imaging and Graphics. 19 (5), 377-384 (1995).
  6. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 305 (5686), 1007-1009 (2004).
  7. Santi, P. A. Light sheet fluorescence microscopy: a review. The Journal of Histochemistry and Cytochemistry. 59 (2), 129-138 (2011).
  8. Santi, P. A., et al. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. BioTechniques. 46 (4), 287-294 (2009).
  9. Schröter, T. J., Johnson, S. B., John, K., Santi, P. A. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection. Biomedical Optics Express. 3 (1), 170-177 (2012).
  10. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 322 (5904), 1065-1069 (2008).
  11. Buytaert, J. A. N., Dirckx, J. J. J. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. Journal of Biomedical Optics. 12 (1), 014039 (2007).
  12. Spalteholz, W. . On making human and animal preparations transparent. , (1914).
  13. Johnson, S., Schmitz, H., Santi, P. TSLIM imaging and a morphometric analysis of the mouse spiral ganglion. Hearing Research. 278 (1-2), 34-42 (2011).
  14. Santi, P. A. Organ of Corti surface preparations for computer-assisted morphometry. Hearing Research. 24 (3), 179-187 (1986).
  15. Brown, D., Pastras, C., Curthoys, I., Southwell, C., Van Roon, L. Endolymph movement visualized with light sheet fluorescence microscopy in an acute hydrops model. Hearing Research. 339, 112-124 (2016).
  16. White, J. A., Burgess, B. J., Hall, R. D., Nadol, J. B. Pattern of degeneration of the spiral ganglion cell and its processes in the C57BL/6J mouse. Hearing Research. 141 (1-2), 12-18 (2000).
  17. Grierson, K. E., Hickman, T. T., Liberman, M. C. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hearing Research. 422, 108533 (2022).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

187

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。