登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

社会威胁安全测试允许同时评估社会回避发展,作为厌恶条件学习和社会威胁安全辨别能力的测量,两者都用于在一组长期社会失败的雄性小鼠中识别压力易感和压力弹性个体。

摘要

社会压力是精神障碍发展的主要原因。为了提高临床前研究的转化价值,社会压力体验及其对小鼠的行为影响应与人类相当。慢性社交失败 (CSD) 利用一种涉及身体攻击和感官威胁的社会压力来诱发类似于人类情感障碍的精神功能障碍。为了加强 CSD 的社会心理成分,应用了为期 10 天的 CSD 方案,其中每日物理攻击被标准化为三次 10 秒发作,然后是 24 小时的感觉阶段。在第 10 感觉阶段之后,CSD 协议之后是称为社会威胁安全测试 (STST) 的精细行为测定。应激后行为测定需要确定社会压力源如何以及在多大程度上影响了行为。STST允许长期被社会击败的雄性小鼠与2个新的雄性个体(社会目标)相互作用:一个来自CSD期间遇到的攻击菌株的社会目标,另一个来自新菌株。两者同时呈现在三室测试场的不同隔间中。该测试能够同时评估社会回避的发展,以衡量成功的厌恶条件学习和社会威胁安全辨别能力。对这两种菌株的社会回避的发展反映了一种普遍的厌恶反应,因此也反映了压力易感性的测量。同时,社会回避的发展仅反映了威胁-安全歧视,从而反映了压力弹性的衡量标准。最后,缺乏对攻击压力的社会回避反映了厌恶条件学习受损。该协议旨在通过包括转化标准,特别是威胁安全歧视和厌恶反应泛化,来完善目前使用的压力易感性/复原力小鼠模型,将一组长期被社会击败的动物分类为复原力和易感亚群,最终推进未来的转化方法。

引言

压力被定义为由身体或心理刺激引起的体内平衡破坏1.众所周知,压力是导致创伤后应激障碍、抑郁和焦虑等精神障碍发展的主要危险因素 2,3。特别是,社会压力被认为是与压力相关的精神障碍发展的主要危险因素4.一种在研究中变得特别重要的社会压力是社会从属压力5.小鼠和人类一样,具有丰富的社会行为6,使它们适合于涉及社会压力的调查。在实验室环境中,当成年小鼠被群体饲养时,它们建立了一个社会结构,涉及形成7级。因此,设计了菌落模型来研究自然建立的社会等级制度对混合性别小鼠群体的影响8。多年来,已经开发了群体模型的变体来利用社会从属压力,包括同性群体模型、社会不稳定模型和入侵者-群体模型。然而,近年来,一种被称为男性居民入侵者模型的特殊变体在文献中流行起来,将社会复杂性简化为两只小鼠:居民和入侵者。感兴趣的动物,称为入侵者,被放入一个更大、更老、更退休的饲养员的笼子里,称为居民或侵略者。然后,居民对入侵者进行人身攻击,作为一种对抗方法,建立一种社会等级制度,其中居民占主导地位,入侵者处于从属地位。当对抗是一次性事件时,它们被归类为"急性"("急性社会失败模型"),而持续数天(通常为 10 天)的重复对抗被称为"慢性"("慢性社会失败模型")。在慢性社交失败 (CSD) 模型中,发作是间歇性的,通常局限于 5-10 分钟9 的时间段,称为物理阶段。在物理阶段之后,入侵者和居民被关在同一个笼子里过夜,用网状墙隔成两半,允许除物理接触以外的所有形式的互动。这种配置被称为感觉阶段,通过威胁的持续出现而不是直接的身体对抗来诱发压力。2018 年,van der Kooji 及其同事引入了一种改良的慢性社会失败治疗,通过标准化和严格限制物理阶段10 来关注模型的社会心理成分。修改后的模型将物理攻击限制为三个 10 秒的发作,与不同的居民发生,发生在感觉阶段的 15 分钟发作间隔内。在第三次身体发作之后,感觉阶段持续一夜。这个循环连续重复 10 天,每集都有新居民。改进后的治疗增强了慢性社会失败模型的转化效度,因为入侵者的身体伤害被最小化,并且减少了不同物理攻击持续时间的结果变异性。

由于 CSD 模型用于研究与压力相关的疾病(例如,抑郁症、焦虑症、创伤后应激障碍),因此选择行为后检测,包括但不限于攻击性、记忆力和快感缺乏的行为检测。近年来,小鼠的 CSD 后行为测定经常评估社交能力如何以及在多大程度上受到影响9.社交能力被定义为小鼠对社会互动的天生偏好,而不是在社会上避免同种。由于社交能力会受到压力影响,因此建立了仅评估社交回避发展的测定法。压力引起的社交回避具有转化相关性,因为它代表了人类社交焦虑和抑郁的主要行为症状之一11.与人类类似,并非所有小鼠在CSD治疗后都会出现社交回避,这表明压力反应中存在个体性。Cohen 及其同事提出了截止行为标准,认为这是研究个体性神经生物学的一种有前途的方法12.基于行为的动物选择导致群体划分,强调了基因环境研究的基础。随后,不同的亚组通常表现出特定遗传变异/修饰的不同富集,这反过来又可以在不同的环境条件下进行研究13.因此,利用社会回避发展中的个体性将长期社会失败的雄性小鼠分为两个亚组:压力易感(社交回避)和压力弹性(社交非回避9,14)。然而,应在治疗(此处为CSD)和治疗后行为测定的整体背景下考虑将小鼠的社会回避表型解释为适应不良或适应性行为。此外,理想情况下,选择的治疗后行为测定将评估社交能力的其他方面,而不仅仅是社交回避的发展。我们最近的工作揭示了条件学习在 CSD 引起的社交回避中的参与15。具体来说,CSD诱发的社会回避是对居民应变的特征的厌恶性条件反应,作为对无条件刺激的条件刺激,即居民的攻击。此外,在社会回避型亚组中,一些个体可以区分厌恶型居民菌株的特征和其他安全新型菌株的特征,而另一些个体则对这两种菌株表现出普遍的社会回避性。我们在这里提出了一种改进的 CSD 后行为检测:社会威胁安全测试 (STST)15。与其他社会互动测试9不同,STST可以同时评估社会回避发展,作为正确厌恶条件反应(即成功的条件学习)和社会威胁安全辨别能力的测量,这两者都用于识别压力易感和压力弹性个体在一组长期社会失败的雄性小鼠中。社会威胁-安全歧视与厌恶反应泛化的评估扩展了用于将长期被社会击败的单一动物群体分类为弹性和易感亚群的转化标准。

研究方案

所有程序均按照欧洲共同体理事会关于动物护理和使用实验程序的指令进行,并得到地方当局(Landesuntersuchungsamt Rheinland-Pfalz)的批准。 图 1 表示时间轴示意图。

1. 治疗

  1. 感兴趣的动物:在7周龄时获得C57BL6 / J雄性小鼠,并在到达时,在温度和湿度控制的设施中以12小时的光暗循环(灯亮:8:00;熄灯:20:00;23°C;38%湿度)与食物和水随意。
  2. 慢性社会失败 (CSD)
    1. 治疗组
      1. 习惯 1 周后,使用 CD-1 菌株作为居民菌株连续 10 天进行 CSD 治疗(有关详细方案,请参阅慢性社交失败9 和改良的慢性社交失败治疗10)。
      2. 将 C57BL6/J 鼠标引入 CD-1 鼠标的笼子中,并计算 10 秒的物理攻击。重复这一集三次,每次使用不同的 CD-1 鼠标,每集间隔 15 分钟。
      3. 在这些间隔期间,在 C57BL6/J 鼠标和 CD-1 鼠标之间放置网状壁,只允许感官接触。在第三集之后,将C57BL6 / J小鼠饲养在CD-1小鼠的笼子中过夜,用网状墙将两者隔开。重复 10 天。
        注意:CD-1 小鼠数 = C57BL6/J 小鼠数 + 1。如果C57BL6 / J处理的小鼠数量低于10只,则仍然需要至少10只CD-1小鼠,以确保每天最后一个感觉阶段(持续过夜)在整个10天的治疗中使用新的CD-1小鼠。
      4. 在10天内仔细评估动物的身体健康状况。如果动物受到严重伤害,出于伦理和科学(治疗后测试期间的活动/活动)原因,将其排除在实验之外。 表 1 提供了幸福感清单。
    2. 对照组
      1. 到达后,将同龄小鼠维持在与治疗组相同的条件下。
      2. 习惯化1周后,将对照动物引入空笼中90秒,然后将它们放回单独的笼子(单室)中,用与治疗组相同的网壁隔成两半。每天与 10 个治疗日同时进行。
        注意:建议将对照组和治疗组安置在不同的房间内。
  3. 在最后一个(第10)感觉阶段之后,将所有小鼠单体饲养在与到达时描述的条件相似的新笼子中,并让它们休息过夜。
    注意:最后一个感觉阶段应持续24小时,然后将动物单独饲养。

2. 治疗后测试:社会威胁-安全测试(图2

  1. 在CSD治疗后,将所有小鼠(治疗组和对照组)单房置于与到达时描述的条件相似的新笼子中,并让它们休息过夜。
  2. 在早上(8:00-13:30),用5%乙醇清洁三室竞技场(矩形,总尺寸为60厘米×40厘米,由透明亚克力墙和光滑地板制成),并将其放在37勒克斯的光照条件下。确保整个竞技场都可见。
  3. 用5%乙醇清洁网状外壳(由金属或丙烯酸制成的笼状),并如图 1A中的角落所示放置它们。
  4. 习惯阶段:将感兴趣的动物引入竞技场的中心,进行 6 分钟的探索,然后将它们放回笼子里。
  5. 将新型(未知)CD-1 社会目标(同种)放在一个网状外壳下,将新型 129/Sv 社会目标置于另一个网状外壳下。
    注意:使用未知的 129/Sv 同种物种以避免熟悉偏差很重要。每个竞技场最好有 4 个网状围栏:2 个归因于适应阶段,2 个归因于测试阶段。
  6. 测试阶段:立即将感兴趣的动物重新引入竞技场的中心,并进行 6 分钟的探索。
  7. 将所有动物送回家中。在对不同动物的测试之间用5%乙醇清洁竞技场和网状围栏,但切勿在观察同一动物期间,即在习惯和测试阶段之间。
  8. 在动物之间交替放置网状围栏的位置(切勿在同一动物内的两个阶段之间)以控制可能的位置优先偏差。

3. 评分与分析

注意:仅对压力后治疗测试,即 STST 进行评分和分析(而不是 CSD 压力治疗)。

  1. 将相互作用区域定义为网格外壳边界周围 2 cm。
  2. 对动物的鼻子在相互作用区内的习惯阶段探索网状围栏所花费的持续时间进行评分。
  3. 对在测试阶段,当动物的鼻子在交互区域内时与社会目标互动所花费的持续时间进行评分。
    注意: 检测可以手动实现(使用计时器或软件进行手动评分)或自动实现。无论采用何种检测方法,都应以鼻子点进行探索和社交互动测量,以身体中心点进行与活动相关的测量(例如,移动距离)。
  4. 按如下方式计算社交互动指数:在测试阶段探索每个社交目标所花费的时间/在习惯阶段探索两个空网状围栏所花费的平均时间(图2B)。
  5. 将治疗组分为3个亚组,如下所示:具有CD-1社会目标的社会互动指数≥1的动物是非回避者,具有两个社会目标的社会互动指数<1的动物是不分青红皂白的回避者,具有社会互动指数≥1的动物具有129 / Sv社会目标是歧视性回避者(图2C-D)。
    注:三个亚组中每个亚组中的动物数量在不同的动物批次之间可能不同(接受CSD治疗的所有动物中约有1/3将显示三个亚组之一的表型特征)。
  6. 通过统计分析治疗组和对照组之间具有 CD-1 社会目标的社会互动指数(参数双样本 t 检验或非参数 Mann-Whitney 检验)来评估压力效应。

结果

社会互动指数作为厌恶条件反应的衡量标准
社会互动指数 ≥1 反映了与探索空网格围栏相比,与相应社会目标的社交互动更大。在基线条件下,这里定义为对特定菌株的特征特征既没有食欲经验也没有厌恶经验(这里既有对照组的社会目标,也有治疗组的 129/Sv 社会目标),完整的社交水平反映在具有相同菌株的社会互动指数 ≥1 中。同时,在具有特定菌株(此处为居民菌株,即 C...

讨论

这里的行为方案描述了社会威胁-安全测试,用于将 CSD 治疗后的一组分为三个不同的亚组,作为一种研究压力易感性和弹性的潜在生物学以及测试潜在疗法的方法。需要仔细考虑生物学背景和技术细节,以指导彻底的实验设计。

不同的住房条件会改变攻击性社交水平,从而可能影响从治疗后测试中获得的结果28,29,

披露声明

作者没有什么可透露的。

致谢

这项研究得到了合作研究中心 1193 子项目 Z02 的支持,该子项目由德国国家研究基金会(SFB1193,弹性神经生物学)和勃林格殷格翰基金会(授予莱布尼茨弹性研究所和个体表型和高分辨率自动行为分析)。我们要感谢 Konstantin Radyushkin 博士和 Sandra Reichel 女士的技术援助,以及 Hanna Kim 女士的英语语言支持。资金来源没有参与模型设计;数据的收集、分析和解释;在协议的编写中;以及提交议定书供公布的决定。

材料

NameCompanyCatalog NumberComments
ArenasNoldus, Sociability cage, Wageningen, the Netherlandshttps://www.noldus.com/applications/sociability-cageThree-chambered, rectangle in shape with a total size of 60 cm x  40 cm, made of acrylic transparent walls and smooth floors
Camera for video recordingBasler AG, Germany
An der Strusbek 60-62
22926 Ahrensburg
 ace Classic
acA1300-60gc
If using automatic detection program, make sure cameras are compatible
Camera objectiveKOWA Kowa Optimed Deutschland GmbH
Fichtenstr. 123
40233 Duesseldorf: LMVZ4411 | 1/1.8" 4.4~11mm Varifokal Objektiv
Part-No. 10504
Detection program/Timer Noldus, EthoVision-XT, Wageningen, the Netherlandshttps://www.noldus.com/ethovision-xtDetection can be achieved either manually (using a timer or a software for manual scoring) or automatically
Housing cagesZOONLAB GmbH, Hermannstraße 6,
44579 Castrop-Rauxel
3010010Type 2 cages: 265 mm x 205 mm x 140 mm (l x w x h) i.e. 360 cm² bottom area. Made of Polycarbonate (Makrolone©) and Polysulfone. Lids are made of stainless steel. European standard cages for up to 5 mice (20–25 g). Autoclavable up to 134 °C
Mesh enclosures Part of the Arena Package: Noldus, Sociability cage, Wageningen, the Netherlandshttps://www.noldus.com/applications/sociability-cageSmall acrylic or metal cage-like with a diameter of 100 mm and a height of 200 mm with openings of a 10 mm in size. Two mesh enclosures per arena would work but four is preferable (see point 2.5 in protocol)
Mesh wallselfmadeN/AAcrylic or metal, one for each cage. Size depends on cages used. The walls must not allow the two animals to have a physical contact
Social targets: Mice of the strains CD-1 and 129/Sv; retired male breedersMice provided by Charles River:
Strain name: CD-1®IGS Mouse
129S2/SvPasCrl 
Crl:CD1(ICR); 129S2/SvPasCrl CD-1 and 129/Sv retired male breeders, single-housed, novel (unknown) conspecifics to the animals of interest. If retired male breeders are not available then males older than 1 year from both strains would suffice

参考文献

  1. Hyman, S. E. How mice cope with stressful social situations. Cell. 131 (2), 232-234 (2007).
  2. Kessler, R. C. The effects of stressful life events on depression. Annual Review of Psychology. 48 (1), 191-214 (1997).
  3. Vos, T., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study, 2013. The Lancet. 386 (9995), 743-800 (2015).
  4. Björkqvist, K. Social defeat as a stressor in humans. Physiology & Behavior. 73 (3), 435-442 (2001).
  5. Blanchard, R. J., McKittrick, C. R., Blanchard, D. C. Animal models of social stress: effects on behavior and brain neurochemical systems. Physiology & Behavior. 73 (3), 261-271 (2001).
  6. Singleton, G. R., Krebs, C. J. Chapter 3- The Secret World of Wild Mice. The Mouse in Biomedical Research. American College of Laboratory Animal Medicine. The Mouse in Biomedical Research (Second Edition). 1, 25-51 (2007).
  7. Kondrakiewicz, K., Kostecki, M., Szadzińska, W., Knapska, E. Ecological validity of social interaction tests in rats and mice. Genes, Brain, and Behavior. 18 (1), e12525 (2019).
  8. Martinez, M., Calvo-Torrent, A., Pico-Alfonso, M. A. Social defeat and subordination as models of social stress in laboratory rodents: a review. Aggressive Behavior: Official Journal of the International Society for Research on Aggression. 24 (4), 241-256 (1998).
  9. Golden, S. A., Covington III, H. E., Berton, O., Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nature Protocols. 6 (8), 1183 (2011).
  10. van der Kooij, M. A., et al. Chronic social stress-induced hyperglycemia in mice couples individual stress susceptibility to impaired spatial memory. Proceedings of the National Academy of Sciences of the United States of America. 115 (43), E10187-E10196 (2018).
  11. Chartier, M. J., Walker, J. R., Stein, M. B. Considering comorbidity in social phobia. Social Psychiatry and Psychiatric Epidemiology. 38 (12), 728-734 (2003).
  12. Cohen, H., Zohar, J., Matar, M. A., Kaplan, Z., Geva, A. B. Unsupervised fuzzy clustering analysis supports behavioral cutoff criteria in an animal model of post-traumatic stress disorder. Biological Psychiatry. 58 (8), 640-650 (2005).
  13. Scharf, S. H., Schmidt, M. V. Animal models of stress vulnerability and resilience in translational research. Current Psychiatry Reports. 14 (2), 159-165 (2012).
  14. Krishnan, V., et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 131 (2), 391-404 (2007).
  15. Ayash, S., Schmitt, U., Müller, M. B. Chronic social defeat-induced social avoidance as a proxy of stress resilience in mice involves conditioned learning. Journal of Psychiatric Research. 120, 64-71 (2020).
  16. Ayash, S., et al. Fear circuit-based neurobehavioural signatures mirror resilience to chronic social stress in mouse. Proceedings of the National Academy of Sciences of the United States of America. 120 (17), e2205576120 (2023).
  17. Duits, P., et al. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depression and Anxiety. 32 (4), 239-253 (2015).
  18. Coifman, K. G., Bonanno, G. A., Rafaeli, E. Affect dynamics, bereavement, and resilience to loss. Journal of Happiness Studies. 8 (3), 371-392 (2007).
  19. Waugh, C. E., Thompson, R. J., Gotlib, I. H. Flexible emotional responsiveness in trait resilience. Emotion. 11 (5), 1059 (2011).
  20. Bonanno, G. A. Loss, trauma, and human resilience: Have we underestimated the human capacity to thrive after extremely aversive events. American Psychologist. 59 (1), 20 (2004).
  21. Bonanno, G. A. Resilience in the face of potential trauma. Current Directions in Psychological Science. 14 (3), 135-138 (2005).
  22. Yehuda, R., Flory, J. D., Southwick, S., Charney, D. S. Developing an agenda for translational studies of resilience and vulnerability following trauma exposure. Annals of the New York Academy of Sciences. 1071 (1), 379-396 (2006).
  23. Grillon, C., Morgan III, C. A. Fear-potentiated startle conditioning to explicit and contextual cues in Gulf War veterans with post-traumatic stress disorder. Journal of Abnormal Psychology. 108 (1), 134 (1999).
  24. Brewin, C. R. A cognitive neuroscience account of post-traumatic stress disorder and its treatment. Behaviour Research and Therapy. 39 (4), 373-393 (2001).
  25. Milad, M. R., Rauch, S. L., Pitman, R. K., Quirk, G. J. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biological Psychology. 73 (1), 61-71 (2006).
  26. Jovanovic, T., Norrholm, S. D. Neural mechanisms of impaired fear inhibition in post-traumatic stress disorder. Frontiers in Behavioral Neuroscience. 5, 44 (2011).
  27. Morton, D. B., Griffiths, P. H. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. The Veterinary Record. 116 (6), 431-436 (1985).
  28. Goldsmith, J. F., Brain, P. F., Benton, D. Effects of the duration of individual or group housing on behavioural and adrenocortical reactivity in male mice. Physiology & Behavior. 21 (5), 757-760 (1978).
  29. Cairns, R. B., Hood, K. E., Midlam, J. On fighting in mice: Is there a sensitive period for isolation effects. Animal Behaviour. 33 (1), 166-180 (1985).
  30. Varlinskaya, E. I., Spear, L. P., Spear, N. E. Social behavior and social motivation in adolescent rats: role of housing conditions and partner's activity. Physiology & Behavior. 67 (4), 475-482 (1999).
  31. Sial, O. K., Warren, B. L., Alcantara, L. F., Parise, E. M., Bolaños-Guzmán, C. A. Vicarious social defeat stress: Bridging the gap between physical and emotional stress. Journal of Neuroscience Methods. 258, 94-103 (2016).
  32. Brown, R. E., Brown, R. E., Macdonald, D. W. . The rodents II. Suborder Myomorpha. [In: Social Odours in Mammals]. 1, (1985).
  33. Haney, M., Miczek, K. A. Ultrasounds during agonistic interactions between female rats (Rattus norvegicus). Journal of Comparative Psychology. 107 (4), 373 (1993).
  34. Warren, B. L., et al. Neurobiological sequelae of witnessing stressful events in adult mice. Biological Psychiatry. 73 (1), 7-14 (2013).
  35. Malatynska, E., Knapp, R. J. Dominant-submissive behavior as models of mania and depression. Neuroscience & Biobehavioral Reviews. 29 (4-5), 715-737 (2005).
  36. Avgustinovich, D. F., Kovalenko, I. L., Kudryavtseva, N. N. A model of anxious depression: persistence of behavioral pathology. Neuroscience and Behavioral Physiology. 35 (9), 917-924 (2005).
  37. Vennin, C., et al. A resilience related glial-neurovascular network is transcriptionally activated after chronic social defeat in male mice. Cells. 11 (21), 3405 (2022).
  38. Ayash, S., Schmitt, U., Lyons, D. M., Müller, M. B. Stress inoculation in mice induces global resilience. Translational Psychiatry. 10 (1), 200 (2020).
  39. Yuan, R., et al. Long-term effects of intermittent early life stress on primate prefrontal-subcortical functional connectivity. Neuropsychopharmacology. 46 (7), 1348-1356 (2021).
  40. Lyons, D. M., Ayash, S., Schatzberg, A. F., Müller, M. B. Ecological validity of social defeat stressors in mouse models of vulnerability and resilience. Neuroscience & Biobehavioral Reviews. 145, 105032 (2023).
  41. Oizumi, H., et al. Influence of aging on the behavioral phenotypes of C57BL/6J mice after social defeat. PLoS One. 14 (9), e0222076 (2019).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

JoVE 202

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。