Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The purpose of this protocol is to describe a method to produce slices of the dorsal hippocampus for electrophysiological examination. This procedure employs perfusion with chilled ACSF prior to slice preparation with a near-coronal slicing angle which allows for preservation of healthy principal neurons.

Abstract

Whole-cell patch-clamp recordings from acute rodent brain slices are a mainstay of modern neurophysiological research, allowing precise measurement of cellular and synaptic properties. Nevertheless, there is an ever increasing need to perform correlated analyses between different experimental modes in addition to slice electrophysiology, for example: immunohistochemistry, molecular biology, in vivo imaging or electrophysiological recording; to answer evermore complex questions of brain function. However, making meaningful conclusions from these various experimental approaches is not straightforward, as even within relatively well described brain structures, a high degree of sub-regional variation of cellular function exists. Nowhere is this better exemplified than in the CA1 of the hippocampus, which has well-defined dorso-ventral properties, based on cellular and molecular properties. Nevertheless, many published studies examine protein expression patterns or behaviorally correlated in vivo activity in the dorsal extent of the hippocampus; and explain findings mechanistically with cellular electrophysiology from the ventro-medial region. This is further confounded by the fact that many acute slice electrophysiological experiments are performed in juvenile animals, when other experimental modes are performed in more mature animals. To address these issues, this method incorporates transcardial perfusion of mature (>60 day old rodents) with artificial cerebrospinal fluid followed by preparation of modified coronal slices including the septal pole of the dorsal hippocampus to record from CA1 pyramidal cells. This process leads to the generation of healthy acute slices of dorsal hippocampus allowing for slice-based cellular electrophysiological interrogation matched to other measures.

Introduction

The hippocampus is arguably the most well studied structure in the mammalian brain, due to its relatively large size and prominent laminar structure. The hippocampus has been implicated in a number of behavioral processes: spatial navigation, contextual memory, and episode formation. This is, in part, due to the relative ease of access to the dorsal portions of the hippocampus in rodents for in vivo analysis. Indeed, the major output cells are typically less than 2 mm from the pial surface.

In rodents, the hippocampus is a relatively large structure, formed of an invagination of the telencephalon extending from the dorsal septum to....

Protocol

All animals were generated and maintained according to the Home Office and Institutional guidelines (HO# P135148E). All rats were maintained on a 12 h light/dark cycle and given ad libitum access to food and water.

1. Transcardial perfusion of chilled ACSF

  1. Prior to all experiments, place ~200 mL of sucrose-ACSF (Table 1) in the freezer at -20 °C (until semi-frozen, for slicing) and a further ~100-200 mL of filtered sucrose-ACSF on ice (for perfusion),.......

Representative Results

The protocol described above allows for the preparation of viable slices from the septal pole of the dorsal hippocampus in mature rats. A key factor in this protocol is the perfusion of chilled sucrose-ACSF, prior to slice preparation, resulting in healthy CA1 PCs proximal to the slice surface. The quality of the slice produced is assessed visually under IR-DIC optics, and healthy cells identified as having large, ovoid-shaped cell bodies are located throughout the full extent of stratum pyramidale, from the com.......

Discussion

Here, a protocol is described to produce high-quality brain slices from the dorsal extent of the CA1 of the hippocampus, allowing for recordings from multiple viable neurons within this region. The combinatorial approach of whole-cell recording from near-coronal slices followed by neuron visualization is critical to the confirmation of cell viability and identity.

This protocol reliably produces viable slices for 2 major reasons. Firstly, the modification to the cutting angle, as a deviation f.......

Acknowledgements

The author wishes to thank Prof. David JA Wyllie, Dr. Emma Perkins, Laura Simoes de Oliveira, and Prof. Peter C Kind for helpful comments on the manuscript and protocol optimisation, and The Simons Initiative for the Developing Brain for providing publication costs.

....

Materials

NameCompanyCatalog NumberComments
Acquisition softwareMolecular DevicespClamp 10
Adult ratsVariousn/aAny strain of adult rat (60 days and older)
AmplifierMolecular DevicesAxopatch 700B
Analysis softwareFreewareStimfithttps://github.com/neurodroid/stimfit
Bone ScissorsFST16152-12Littauer style
Capillary GlassHarvard Apparatus30-0060Borosilicate glass pipettes with filament 1.5 mm outer diameter, 0.86 mm inner diameter.
CarbogenBOCVarious95% O2/5% CO2
CCD cameraScientificaSciCamProhttps://www.scientifica.uk.com/products/
Chemicals/ReagentsSigma AldrichVariousAll laboratory reagents procured from Sigma Aldrich.
Cyanoacrylate (i.e. RS Pro 3)RS Components918-6872Avoid gel based cyanoacrylate formulations
DigitizerMolecular DevicesDigidata 1550B
Dissection pins/needlesVariousVariousUse 16 gauge needles (above)
Electrophysiology systemScientificaSliceScopehttps://www.scientifica.uk.com/products/ scientifica-slicescope
Fine iris scissorsFST14568-12With Tungsten-Carbide tips
Glass Petri dishFisher Scientific12911408
Hypodermic needlesBD HealthcareVarious16, 18, and 22 gauge
Isofluorane 100% W/W (i.e.IsoFlo)Zoetis50019100
Mayo-type scissorsFST14110-17Blunt tips
MicromanipulatorsScientificaMicrostarhttps://www.scientifica.uk.com/products/scientifica-microstar-micromanipulator
PaintbrushArt storen/aA fine bristled paintbrush, procured from a local art shop.
Pasteur pipetteFisher Scientific11546963A glass Pasteur pipette, but cut so that the blunt end is used to transfer pipette.
Peristaltic pumpWatson Marlow12466260Single channel peristaltic pump
Pipette pullerSutter InstrumentsP-97Other models and methods of pipette production would work equally well.
Plastic syringes (1, 2, 5 mL)BD HealthcareVarious
Rongeur bone toolFST16021-14
Slice holding chamberHomemade
Slice weight/harpHarvard ApparatusSHD-22L/15Alternatives would be suitable.
Sodium Pentobarbital (i.e. Pentoject)Animalcare Ltd10347/4014200 mg/mL; other formulations of pentobarbital would be suitable
SpatulaBochem3213Available from Fisher Scientific
Syringe filtersFisher Scientific10482012Corning brand syringe filters, 0.22 µm pore diameter.
VibtratomeLeica1491200S001VT1200S model with Vibrocheck
Water BathFisher Scientific151670155 Litre water bath, for example: Grant Instrumentsâ„¢JBA5 scientifica-scicam-pro

References

  1. Amaral, D. G., Witter, M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 31 (3), 571-591 (1989).
  2. Moser, M. B., Moser, E. I. Functional differentiation....

Explore More Articles

Acute Brain SlicesDorsal HippocampusWhole cell Patch clampElectrophysiologyCellular PropertiesSynaptic PropertiesDorso ventral VariationCA1 Pyramidal CellsTranscardial PerfusionCoronal SlicesMature Rodents

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved