A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a patterned direct contact glioma-astrocyte co-culture utilizing micro-contact printing on polyelectrolyte multilayers (PEMs) to pattern U87 or A172 GBM cells and primary astrocytes.
Glioblastoma Multiforme (GBM) is the most abundant and fatal malignant brain cancer. There are more than 13,000 cases projected in the United States in 2020 and 2021. GBM tumors most often arise from astrocytes and are characterized by their invasive nature, often recruiting healthy tissues into tumor tissue. Understanding communication between astrocytes and glioblastoma cells is vital for the molecular understanding of tumor progression. This protocol demonstrates a novel patterned co-culture method to investigate contact-mediated effects of astrocytes on GBM employing layer-by-layer assembly and micro-capillary-force driven patterning. Advantages include a protein-free cell culture environment and precise control of cellular interaction dictated by the pattern dimensions. This technique provides a versatile, economical, reproducible protocol for mimicking cellular interaction between glioma and astrocytes in glioma tumors. This model can further be used to tease apart changes in GBM molecular biology due to physical contact with astrocytes or with non-contact mediated soluble cofactor communication.
Glioblastoma Multiforme (GBM) is the most prolific and deadly brain cancer in the United States with a median survival time of around 15 months1. Fewer than 7% of GBM patients survive more than 5 years post diagnosis1,2. By 10 years, that figure drops to less than 1%1,2. Though other cancer types have made marked improvements in survival in recent decades, the success of GBM patients falls short. To develop successful therapeutic interventions, an appropriate in situ model must be utilized to develop a more thorough und....
This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Nebraska-Lincoln (Project ID: 1046). Primary astrocytes were prepared from 1-3 day-old Sprague-Dawley rat pups in compliance with UNL's IACUC protocol 1046 and according to protocol with slight modifications7,
The protocol here describes the engineering of direct contact patterned co-culture of glioma cells and astrocytes. This platform provides a biomimetic multicellular model to study the role of direct contact in the communication between astrocytes and glioma cells in the progression of glioblastoma multiforme (GBM). Figure 1 provides a scheme of the step-by-step surface modification and cellular introduction outlined above. Step one is to obtain a culture platform (glass coverslip, tissue cul.......
Critical steps to assure the successful assembly of a reproducible patterned co-culture include: 1) the successful patterning of the surface by micromolding in capillaries, 2) the successful washing of stained cells, and 3) the analysis of the co-culture in the "mature culture" window. First, the successful reproduction of patterns with micromolding in capillaries is critical to the reproducibility of interaction as this is what sets patterned co-culture apart from random co-culture. To assure this reproducibilit.......
This work was supported, in whole or in part, by NIH grants 1R01AA027189-01A1 (to S.K.), P20 GM104320 (to the Nebraska Center for the Prevention of Obesity Diseases Pilot Grant to S.K.), P20 GM113126 (to the Nebraska Center for Integrated Biomolecular Communication-Project Leader S.K.); UNL Office of Research and Development Biomedical Seed Grant and Nebraska Research Initiative-Systems Grant (to S.K.). K.M.S. was funded through T32GM107001, a training grant.
....Name | Company | Catalog Number | Comments |
0.25% Trypsin-EDTA | Fisher Scientific | 25200056 | |
15 ml Nunc Conical Sterile Polypropylene Centrifuge Tubes | Fisher Scientific | 12-565-268 | |
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester | Millipore Sigma | Cat#21888 | |
50 ml Nunc Conical Sterile Polypropylene Centrifuge Tubes | Fisher Scientific | 12-565-270 | |
A172-MG GBM cell line | ATCC | CRL-1620 | |
Bright-Line Hemacytometer | Sigma | Z359629 | Or other suitable cell counting device |
Cell Incubator | N/A | N/A | |
Cooled tabletop centrifuge for 15 mL tubes | N/A | N/A | |
Dulbecco's Modified Eagle Medium (DMEM) | MP Biomedicals | ICN 1033120 | |
Expanded Plasma Cleaner | Plasma Harrick | PDC-001-HP | With attached pressurized oxygen tank and PlasmaFlo Gas Mixer (PDC-FMG) accessory |
Fetal Bovine Serum (FBS) | Atlanta Biologicals | S11550H | |
Fluorosilane | Sigma Aldrich | 667420 | Full chemical name: 1H,1H,2H,2H-Perfluorooctyltriethoxysilane |
Inverted Tabletop Microscope | N/A | N/A | Microscope capable of fluorescent imaging with λex = 551 nm; λem 567 nm [e.g. Rhodamine filter] (PKH26 dye) and λex 492 nm; λem 517 nm [e.g. interference blue filter (IB)] (CFSE dye) |
NaCl | Sigma Aldrich | S7653 | |
NaOH | Sigma Aldrich | 567530 | |
Penicillin-Streptomicen | Fisher Scientific | 15140122 | |
PKH26 Red Fluorescent Cell Linker Mini Kit | Millipore Sigma | Cat#MINI26-1KT | |
Poly(diallyldimethylammonium chloride) solution (PDAC) | Sigma Aldrich | 409014 | 20 wt. % in H2O |
Poly(sodium 4-styrenesulfonate) (SPS) | Sigma Aldrich | 243051 | average MW ~70,000 |
Primary Astrocytes, isolated from Srague Dawley rats | Charles River | Crl:SD | Rats from Charles River; Lab isolated Cells |
Scalpel | N/A | N/A | |
Sodium bicarbonate | Sigma Aldrich | S5761 | |
Sylgard 184 Silicone Elastomer Kit | Dow Chemical | Cat#2646340 | |
Trypan Blue Stain | Fisher Scientific | 15-250-061 | |
TryplE | Fisher Scientific | Gibco TrypLE | |
U87-MG GBM cell line | ATCC | HTB-14 | |
Vacuum Desiccator | N/A | N/A |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved