Anmelden

Beijing Academy of Agriculture and Forestry Sciences

12 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

RNAi-mediated Double Gene Knockdown and Gustatory Perception Measurement in Honey Bees (Apis mellifera)
Ying Wang 1, Nicholas Baker 1, Gro V. Amdam 1,2
1School of Life Sciences, Arizona State University , 2Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences

In this protocol, we describe two strategies that simultaneously suppress two genes (double gene knockdown) in honey bees. Then we present how to use the proboscis extension response (PER) assay to study the effect of double gene knockdown on honey bee gustatory perception.

image

Biology

Imaging Spatial Reorganization of a MAPK Signaling Pathway Using the Tobacco Transient Expression System
Ying Zhang 1, Juan Dong 1,2
1The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 2The Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey

At the subcellular level, signaling events are dynamically modulated by developmental and environmental cues. Here we describe a protocol that employs the tobacco transient expression system to monitor dynamic protein-protein interaction and to disclose spatial organization of signal transduction in plant cells.

image

Immunology and Infection

In Vivo Investigation of Antimicrobial Blue Light Therapy for Multidrug-resistant Acinetobacter baumannii Burn Infections Using Bioluminescence Imaging
Yucheng Wang 1,2,3, Olivia D. Harrington 1, Ying Wang 1, Clinton K. Murray 4, Michael R. Hamblin 1, Tianhong Dai 1
1Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 2Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, 3Cancer Center, Aviation General Hospital, Beijing, 4Infectious Disease Service, Brooke Army Medical Center

Infections caused by multidrug-resistant (MDR) bacterial strains have emerged as a serious threat to public health, necessitating the development of alternative therapeutics. We present a protocol to evaluate the effectiveness of antimicrobial blue light (aBL) therapy for MDR Acinetobacter baumannii infections in mouse burns by using bioluminescence imaging.

image

Cancer Research

A Comprehensive Procedure to Evaluate the In Vitro Performance of the Putative Hemangioblastoma Neovascularization Using the Spheroid Sprouting Assay
Ying Wang 1, DanQi Chen 1, MingYu Chen 1, KaiYuan Ji 1, DeXuan Ma 1, LiangFu Zhou 1
1Department of Neurosurgery, Huashan Hospital, Fudan University

This paper presents a comprehensive procedure to evaluate in vitro whether classic tumor angiogenesis exists in hemangioblastomas (HBs) and its role in HBs. The results highlight the complexity of HB-neovascularization and suggest that this common form of angiogenesis is only a complementary mechanism in the HB-neovascularization.

image

Engineering

Radio Frequency Magnetron Sputtering of GdBa2Cu3O7δ/ La0.67Sr0.33MnO3 Quasi-bilayer Films on SrTiO3 (STO) Single-crystal Substrates
Ying Wang 1,2, Zhen Li 1,2, YongSheng Liu 1, Yijie Li 2, Linfei Liu 2, Da Xu 2, Xiaojing Luo 1, Tian Gao 1,3, Yanyan Zhu 1,4, Luozeng Zhou 3, Jianming Xu 3
1Department of Physics, Mathematics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, 2Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics, Shanghai Jiao Tong University, 3Shanghai Institute of Space Power-sources, 4Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University

Here, we present a protocol to grow LSMO nanoparticles and (Gd) BCO films on (001) SrTiO3 (STO) single-crystal substrates by radio frequency (RF)-sputtering.

image

Biology

Micron-scale Phenotyping Techniques of Maize Vascular Bundles Based on X-ray Microcomputed Tomography
Ying Zhang *1, Liming Ma *1, Xiaodi Pan *1, Jinglu Wang 1, Xinyu Guo 1, Jianjun Du 1
1Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences

We provide a novel method to improve the X-ray absorption contrast of maize tissue suitable for ordinary microcomputed tomography scanning. Based on CT images, we introduce a set of image-processing workflows for different maize materials to effectively extract microscopic phenotypes of vascular bundles of maize.

image

Immunology and Infection

Human Serum Anti-aquaporin-4 Immunoglobulin G Detection by Cell-based Assay
Caiyun Liu 1, Mingqin Zhu 1, Ying Wang 1
1Department of Neurology and Neuroscience Center, The First Hospital of Jilin University

Cell-based assay is a widely used method to detect serum anti-aquaporin-4 immunoglobulin G. This method could be applied to clinical diagnosis and scientific researches of neuromyelitis optical spectrum disorders.

image

Genetics

A Bioinformatics Pipeline to Accurately and Efficiently Analyze the MicroRNA Transcriptomes in Plants
Ying Wang *1,2, Zheng Kuang *1,2, Lei Li 2, Xiaozeng Yang 1
1Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, 2State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University

A bioinformatics pipeline, namely miRDeep-P2 (miRDP2 for short), with updated plant miRNA criteria and an overhauled algorithm, could accurately and efficiently analyze microRNA transcriptomes in plants, especially for species with complex and large genomes.

image

Immunology and Infection

Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models
Soichi Sano 1, Ying Wang 1, Megan A. Evans 1, Yoshimitsu Yura 1, Miho Sano 1, Hayato Ogawa 1, Keita Horitani 1, Heather Doviak 1, Kenneth Walsh 1
1Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine

Described are protocols for the highly efficient genome editing of murine hematopoietic stem and progenitor cells (HSPC) by the CRISPR/Cas9 system to rapidly develop mouse model systems with hematopoietic system-specific gene modifications.

image

JoVE Core

Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis
Eunbee Park 1, Megan A. Evans 4, Heather Doviak 4, Keita Horitani 4, Hayato Ogawa 4, Yoshimitsu Yura 4, Ying Wang 2, Soichi Sano 3,4, Kenneth Walsh 1,4
1Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 2Department of Cardiology, Xinqiao Hospital, Army Medical University, 3Department of Cardiology, Osaka City University Graduate School of Medicine, 4Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine

We describe three methods of bone marrow transplantation (BMT): BMT with total-body irradiation, BMT with shielded irradiation, and BMT method with no pre-conditioning (adoptive BMT) for the study of clonal hematopoiesis in mouse models.

image

Bioengineering

Fabricating Highly Open Porous Microspheres (HOPMs) via Microfluidic Technology
Sheng-Chang Luo 1,2, Ying Wang 3, Ranjith Kumar Kankala 1,2, Yu Shrike Zhang 4, Ai-Zheng Chen 1,2
1Institute of Biomaterials and Tissue Engineering, Huaqiao University, 2Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, 3Affiliated Dongguan Hospital, Southern Medical University, 4Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School

The present protocol describes the fabrication of poly(lactic-co-glycolic acid)-based highly open porous microspheres (HOPMs) via the single-emulsion formulation based facile microfluidic technology. These microspheres have potential applications in tissue engineering and drug screening.

image

Neuroscience

Using a Bipolar Electrode to Create a Temporal Lobe Epilepsy Mouse Model by Electrical Kindling of the Amygdala
Yongchang Lu *1,2, Yang Dai *1,2, Siqi Ou 1,2, Yujing Miao 1, Ying Wang 1,2, Quanlei Liu 1,2, Yihe Wang 1,2, Penghu Wei 1,2, Yongzhi Shan 1,2, Guoguang Zhao 1,2,3
1Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 2China Clinical Research Center for Epilepsy Capital Medical University, 3China Beijing Municipal Geriatric Medical Research Center

The amygdala plays a key role in temporal lobe epilepsy, which originates in and propagates from this structure. This article provides a detailed description of the fabrication of deep brain electrodes with both recording and stimulating functions. It introduces a model of medial temporal lobe epilepsy originating from the amygdala.

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2024 MyJoVE Corporation. Alle Rechte vorbehalten