Raman spectroscopy is a suitable technique for the non-contact, label-free analysis of living cells, tissue-engineered constructs and native tissues. Source-specific spectral fingerprints can be generated and analyzed using multivariate analysis.
Methods to create human 3D tumor tissues as test systems are described. These technologies are based on a decellularized Biological Vascularized Scaffold (BioVaSc), primary human cells and a tumor cell line, which can be cultured under static as well as under dynamic conditions in a flow bioreactor.
The goal of this protocol is to build up a three-dimensional full thickness skin equivalent, which resembles natural skin. With a specifically constructed automated wounding device, precise and reproducible wounds can be generated under maintenance of sterility.
A method for implanting electrodes into the subthalamic nucleus (STN) of rats is described. Better localization of the STN was achieved by using a microrecording system. Furthermore, a stimulation set-up is presented that is characterized by long-lasting connections between the head of the animal and the stimulator.
We present a three-dimensional (3D) lung cancer model based on a biological collagen scaffold to study sensitivity towards non-small-cell-lung-cancer-(NSCLC)-targeted therapies. We demonstrate different read-out techniques to determine the proliferation index, apoptosis and epithelial-mesenchymal transition (EMT) status. Collected data are integrated into an in silico model for prediction of drug sensitivity.
Deep brain stimulation (DBS) is an effective treatment option for Parkinson's disease. We established a study design to screen novel stimulation paradigms in rats. The protocol describes the use of the staircase test and cylinder test for motor outcome assessment in DBS treated hemiparkinsonian rats.
This work presents a step-by-step protocol for the unbiased stereological estimation of dopaminergic neuronal cell numbers in the mouse substantia nigra using standard microscopy equipment (i.e., a light microscope, a motorized object table (x, y, z plane), and public domain software for digital image analysis.
Biomaterials doped with Bone Morphogenetic Protein 2 (BMP2) have been used as a new therapeutic strategy to heal non-union bone fractures. To overcome side effects resulting from an uncontrollable release of the factor, we propose a new strategy to site-directly immobilize the factor, thus creating materials with improved osteogenic capabilities.
We propose a cell expansion protocol on macroporous microcarriers and their use as delivery system in a perfusion bioreactor to seed a decellularized tissue matrix. We also include different techniques to determine cell proliferation and viability of cells cultured on microcarriers. Furthermore, we demonstrate functionality of cells after bioreactor cultures.
We provide a protocol to generate a pharmacological DYT/PARK-ATP1A3 dystonia mouse model via implantation of cannulas into basal ganglia and cerebellum connected to osmotic pumps. We describe the induction of dystonia-like movements via application of a motor challenge and the characterization of the phenotype via behavioral scoring systems.
We provide a protocol for the assessment of motor behavior via a behavioral test battery in rats after sciatic nerve crush injury.
A robust protocol is presented here for isolating neuromelanin granules from human post-mortem substantia nigra pars compacta tissue via laser microdissection. This revised and optimized protocol massively minimizes the required time for sample collection, reduces the required sample amount, and enhances the identification and quantification of proteins by LC-MS/MS analysis.
Copyright © 2024 MyJoVE Corporation. Alle Rechte vorbehalten