The forelegs and proboscis of Drosophila contain a rich repertoire of gustatory sensory neurons. Here, we present a method using calcium imaging to measure physiological responses from sensory neurons in the foreleg and proboscis of live flies upon exogenous application of a gustatory pheromone.
We describe a reproducible, automated, and unbiased imaging system for characterizing neuromuscular junction function using human engineered skeletal muscle tissue and optogenetic motoneurons. This system allows for the functional quantification of neuromuscular connectivity over time and detects diminished neuromuscular function caused by neurotoxins and myasthenia gravis patient serum.
Copyright © 2024 MyJoVE Corporation. Alle Rechte vorbehalten